...
首页> 外文期刊>Soil Biology & Biochemistry >Spatial zoning of microbial functions and plant-soil nitrogen dynamics across a riparian area in an extensively grazed livestock system
【24h】

Spatial zoning of microbial functions and plant-soil nitrogen dynamics across a riparian area in an extensively grazed livestock system

机译:广泛放牧畜牧系统中河岸地区微生物功能的空间区划和植物土氮动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Anthropogenic activities have significantly altered global biogeochemical nitrogen (N) cycling leading to major environmental problems such as freshwater eutrophication, biodiversity loss and enhanced greenhouse gas emissions. The soils in the riparian interface between terrestrial and aquatic ecosystems may prevent excess N from entering freshwaters (e.g. via plant uptake, microbial transformations and denitrification). Although these processes are well documented in intensively managed agroecosystems, our understanding of riparian N removal in semi-natural systems remains poor. Our aim was to assess the spatial zoning of soil microbial communities (PLFA), N cycling gene abundance (archaeal and bacterial amoA, nifH, nirK, nirS, nos2), N processing rates and plant N uptake across an extensively sheep grazed riparian area. As expected, soil properties differed greatly across the riparian transect, with significant decreases in organic matter, NH4+, carbon (C) and N content closest to the river ( &10 m). In addition, different microbial community structures were found along the transect. The abundance of N fixation (nifH) increased with distance from the river (&10m), while ammonia oxidising archaea (AOA) increased in abundance towards the river. N2O emissions rates were limited by C and to a lesser extent by N with greater emissions close to the river. Plant uptake of urea-derived N-15 was high (ca. 55-70% of that added to the soil) but 30-65% of the N was potentially lost by denitrification or leaching. Percentage recovered also suggests that the spatial patterning of plant and microbial N removal processes are different across the riparian zone. Our study provides novel insights into the underlying mechanisms controlling the spatial variability of N cycling in semi-natural riparian ecosystems.
机译:人为的活性具有显着改变的全球生物地球化学氮(n)循环,导致主要的环境问题,如淡水富营养化,生物多样性损失和增强的温室气体排放。陆地和水生生态系统之间的河岸界面中的土壤可以防止过量进入新水域(例如,通过植物摄取,微生物转化和反硝化)。虽然这些过程在集中管理的农业生物系统中被充分记录,但我们对半自然系统中的河岸N去除仍然差。我们的目的是评估土壤微生物社区(PLFA)的空间分区,N循环基因丰富(古物和细菌氨基,NiFH,NiRK,NiR,NOS2),N处理率和植物N在广泛的绵羊放牧河岸地区。正如预期的那样,土壤性质在爬堤横断面差异很大,有机物质中显着降低,NH 4 +,碳(C)和最接近河流(& 10米)的N含量。此外,沿横断面发现了不同的微生物群落结构。 N个固定(NiFH)的丰度随着河流(& 10m)的距离而增加,而氨氧化古(AOA)对河流的丰富增加。 N2O排放率受到C的限制,并在较大程度上由N靠近河流的排放量。植物吸收尿素衍生的N-15高(加入到土壤中的55-70%),但止硝或浸出可能会损失30-65%。恢复的百分比还表明,植物和微生物N去除过程的空间图案在河岸区不同。我们的研究为控制半自然河岸生态系统N循环的潜在机制提供了新的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号