首页> 外文期刊>Soil Biology & Biochemistry >Linking absorptive roots and their functional traits with rhizosphere priming of tree species
【24h】

Linking absorptive roots and their functional traits with rhizosphere priming of tree species

机译:将吸收性根部及其具有树种根际底漆的功能性状

获取原文
获取原文并翻译 | 示例
           

摘要

Woody plant roots can be classified into absorptive roots and transport roots based on root functions, order and traits. While there is an emerging view that living roots actively affect soil organic carbon (SOC) decomposition via the rhizosphere priming effect (RPE), the linkages of the RPE with C allocation to absorptive roots (relative to total roots) and their functional traits across soils are virtually unknown. Here, we investigated the RPE by growing a tree species (Chinese fir, Cunninghamia lanceolata) in three isotopically-distinct C-4 soil types with different soil properties such as C/nitrogen (N) ratio and texture, and by growing three tree species (Chinese fir, larch (Larix kaempferi) and ash (Fraxinus mandshurica)) with wide variations in root functional traits in one of the C-4 soils. We classified living roots into absorptive roots (first and second orders) and transport roots (third and higher orders) and then quantified their C allocation (relative to total roots) and morphological and chemical traits associated with economic construction, rhizodeposition and resource acquisition. We found that the RPE of Chinese fir across the three soils decreased with an increase in soil C/N ratio. This result conflicted with the N mining hypothesis and suggests that soil C stabilization mechanisms associated with clay minerals may play an important role. Further, significant differences in the RPE among tree species were largely accounted for by the C allocation to absorptive roots. Moreover, there was a significantly negative relationship between specific surface area of absorptive roots and the specific RPE (per unit biomass of absorptive roots) among tree species, suggesting that absorptive root traits shaping the extent of the rhizosphere may regulate the RPE. Taken together, our results provide evidence that absorptive roots play a predominant role in causing the RPE. These findings present an important step toward improving our capability to predict plant effects on SOC decomposition through linking the RPE to absorptive root functional traits.
机译:木质植物根部可根据根功能,秩序和特征分为吸收性根和运输根。虽然有一种新兴的观点,但是生活根部通过根际灌注效应(RPE)积极地影响土壤有机碳(SOC)分解,RPE与C分配的连杆,以吸收根(相对于全根)及其跨土壤的功能性状几乎是未知的。在这里,我们通过在三个同位素 - 不同的C-4土壤类型中生长树木(中国冷杉,Qunninghamia Lanceolata,以不同的土壤性质如C /氮(N)的比例和质地,以及种植三种树种(中国冷杉,落叶松(Larix Kaempferi)和灰(Fraxinus mandshurica))在一个C-4土壤中具有宽的根功能性状的差异。我们将生活根部分为吸收性根(第一和第二个订单)和运输根(第三个和较高订单),然后量化其C分配(相对于全根)和与经济建设,无条土沉积和资源收购相关的形态学和化学特征。我们发现,跨越三种土壤的中国杉木的RPE随着土壤C / N比的增加而降低。该结果与N采矿假设冲突,并表明与粘土矿物相关的土壤C稳定机制可能发挥重要作用。此外,通过C分配对吸收性的根部,树种之间RPE的显着差异在很大程度上占了。此外,在树种中吸收性根和特定RPE(每单位生物量)的比表面积之间存在显着的负相关性,表明吸收性根部性能整形为根际的程度可以调节RPE。在一起,我们的结果提供了证据表明,吸收性根部在导致RPE方面发挥主要作用。这些发现旨在通过将RPE与吸收性根功能性状联系起来,提高我们预测对SOC分解的植物影响的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号