首页> 外文期刊>Small >Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors
【24h】

Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors

机译:用于先进电化学能量储存的TI基氧化物阳极材料:锂/钠离子电池和杂交假偶联器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Titanium-based oxides including TiO_2 and M-Ti-O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium-ion batteries, sodium-ion batteries, and hybrid pseudocapacitors. Further, Ti-based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in-depth understanding on the morphologies control, surface engineering, bulk-phase doping of Ti-based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti-based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium-ion batteries to sodium-ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.
机译:基于钛的氧化物,包括TiO_2和M = Li,Nb,Na等)家族,表现出有利的结构动力学(2D离子扩散路径,用于离子容纳的开放和稳定结构),用于实际应用储存系统,如锂离子电池,钠离子电池和杂交伪孔径偶联器。此外,基于Ti的氧化物相对于碱金属的沉积显示出高的工作电压,通过避免形成锂和钠树枝状体来确保全安全。另一方面,高工作电位可防止电解质的分解,通过独特的假偶联动力学提供优异的速率能力。然而,内在的差导电性和反应动力学限制了能量存储装置的进一步应用。最近,已经促进了各种工作和深入了解Ti基氧化物的表面工程,表面工程,散装掺杂,以克服这些问题。受此化的灵感来说,在本综述中,作者总结了Ti基氧化物在先进电化学能量储存应用中的基本问题,挑战和进展。特别是,作者专注于从锂离子电池到钠离子电池的工作机制和装置应用的进展,然后是杂交假偶联器。此外,还讨论了对基本研究和实际应用的未来观点。

著录项

  • 来源
    《Small》 |2019年第52期|共44页
  • 作者单位

    MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China;

    Department of Mechanical and Materials Engineering University of Western Ontario London N6A 5B9 Canada;

    MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China;

    MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China;

    MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China;

    Department of Mechanical and Materials Engineering University of Western Ontario London N6A 5B9 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    anode materials; hybrid pseudocapacitors; lithium-ion batteries; sodium-ion batteries; Ti-based oxides;

    机译:阳极材料;杂交假偶联器;锂离子电池;钠离子电池;氧化钛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号