首页> 外文期刊>Small >Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte-Based All-Solid-State Lithium-Sulfur Batteries by Atomic Layer Deposition
【24h】

Solid/Solid Interfacial Architecturing of Solid Polymer Electrolyte-Based All-Solid-State Lithium-Sulfur Batteries by Atomic Layer Deposition

机译:基于固体聚合物电解质的全固态锂 - 硫磺电池的固体/固体互补架构沉积

获取原文
获取原文并翻译 | 示例
       

摘要

Solid polymer electrolytes (SPEs)-based all-solid-state lithium-sulfur batteries (ASSLSBs) have attracted extensive research attention due to their high energy density and safe operation, which provide potential solutions to the increasing need for harnessing higher energy densities. There is little progress made, however, in the development of ASSLSBs to improve simultaneously energy density and long-term cycling life, mostly due to the "shuttle effect" of lithium polysulfide intermediates in the SPEs and the low interfacial compatibility between the metal lithium anode and the SPE. In this work, the issues of solid/solid interfacial architecturing through atomic layer deposition of Al_2O_3 on poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide SPE surface are effectively addressed. The Al_2O_3 coating promotes the suppression of lithium dendrite formation for over 500 h. ASSLSBs fabricated with two layers of Al_2O_3-coated SPE deliver high gravimetric/areal capacity and Coulombic efficiency, as well as excellent cycling stability and extremely low self-discharge rate. This work provides not only a simple and effective approach to boost the electrochemical performances of SPE-based ASSLSBs, but also enriches the fundamental understanding regarding the underlying mechanism responsible for their performance.
机译:基于固态的全固态锂 - 硫磺电池(ASSLSB)的固体聚合物电解质(SPES)由于其高能量密度和安全操作而引起了广泛的研究,这为增加了利用更高能量密度的需求提供了潜在的解决方案。然而,在ASSLSBS的发展中,提高了同时能量密度和长期循环寿命的进展情况几乎是由于SPES中锂多硫化锂中间体的“梭效果”和金属锂阳极之间的低界面相容性和spe。在这项工作中,通过GIS(十三甲烷酰亚砜)酰亚胺SPE表面的Al_2O_3原子层沉积通过原子层沉积的固体层界面叠加的问题。 Al_2O_3涂层促进抑制锂枝晶型形成超过500小时。用两层AL_2O_3涂层SPE制造的ASSLSB提供高重量/面积容量和库仑效率,以及优异的循环稳定性和极低的自放电率。这项工作不仅提供了一种简单有效的方法来提高基于SPE的ASSLSB的电化学性能,而且还丰富了对负责其表现的潜在机制的基本理解。

著录项

  • 来源
    《Small》 |2019年第46期|共8页
  • 作者单位

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    International Center for Materials Nanoarchitectonics (WPI-MANA) and International Center for Young Scientists (ICYS) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan;

    International Center for Materials Nanoarchitectonics (WPI-MANA) and International Center for Young Scientists (ICYS) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan;

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China;

    School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    atomic layer deposition; electrode/electrolyte interfaces; lithium-sulfur batteries; self-discharge; solid polymer electrolytes;

    机译:原子层沉积;电极/电解质界面;锂硫电池;自放电;固体聚合物电解质;
  • 入库时间 2022-08-20 05:40:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号