...
首页> 外文期刊>Small >Unravelling H~+/Zn~(2+) Synergistic Intercalation in a Novel Phase of Manganese Oxide for High-Performance Aqueous Rechargeable Battery
【24h】

Unravelling H~+/Zn~(2+) Synergistic Intercalation in a Novel Phase of Manganese Oxide for High-Performance Aqueous Rechargeable Battery

机译:用于高性能水性可充电电池的新型锰氧化物的新型阶段的H〜+ / Zn〜(2+)协同嵌入

获取原文
获取原文并翻译 | 示例

摘要

Aqueous Zn-MnO_2 batteries using mild electrolyte show great potential in large-scale energy storage (LSES) application, due to high safety and low cost. However, structure collapse of manganese oxides upon cycling caused by the conversion mechanism (e.g., from tunnel to layer structures for α-, β-, and γ-phases) is one of the most urgent issues plaguing its practical applications. Herein, to avoid the phase conversion issue and enhance battery performance, a structurally robust novel phase of manganese oxide MnO_2H_(0.16)(H_2O)_(0.27) (MON) nanosheet with thickness of ≈2.5 nm is designed and synthesized as a promising cathode material, in which a nanosheet structure combined with a novel H~+/Zn~(2+) synergistic intercalation mechanism is demonstrated and evidenced. Accordingly, a high-performance Zn/MON cell is achieved, showing a high energy density of ≈228.5 Wh kg~(-1), impressive cyclability with capacity retention of 96% at 0.5 C after 300 cycles, as well as exhibiting rate performance of 115.1 mAh g~(-1) at current rate of 10 C. To the best current knowledge, this H~+/Zn~(2+) synergistic intercalation mechanism is first reported in an aqueous battery system, which opens a new opportunity for development of high-performance aqueous Zn ion batteries for LSES.
机译:由于高安全性和低成本,使用温和电解质的Zn-MnO_2电池使用温和电解质的电池显示出很大的潜力。然而,在由转换机制(例如,从隧道到α-,β-和γ阶段的层结构引起的循环时锰氧化物的结构崩溃是最迫切的问题之一是困扰其实际应用的问题之一。在此,为了避免相位转换问题和增强电池性能,具有厚度为≈2.5nm的锰氧化物MnO_2H_(0.16)(0.27)(0.27)(MON)纳米片的结构稳健的新阶段被设计和合成为有前途的阴极材料,其中纳米片结构与新的H〜+ / Zn〜(2+)协同嵌入机构进行了证明和证明。因此,实现了高性能Zn / mon电池,显示出在300次循环后的0.5℃下的96%的容量保留的高能量密度,令人印象深刻的可阻碍性,并且具有96%,以及表现出速率性能115.1 mah g〜(-1)的电流率为10℃。至最佳目前的知识,该H〜+ / Zn〜(2+)协同嵌入机构首先在水电池系统中报告,该系统开设了新的机会用于LSE的高性能水性Zn离子电池的开发。

著录项

  • 来源
    《Small 》 |2019年第47期| 共10页
  • 作者单位

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料 ;
  • 关键词

    aqueous Zn batteries; cycling performance; H+/Zn~(2+) synergistic intercalation; manganite nanosheets;

    机译:锌电池水溶液;循环性能;H + / Zn〜(2+)协同嵌入;锰纳纳米蛋白酶;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号