首页> 外文期刊>Small >Defect-Enriched Nitrogen Doped-Graphene Quantum Dots Engineered NiCo_2S_4 Nanoarray as High-Efficiency Bifunctional Catalyst for Flexible Zn-Air Battery
【24h】

Defect-Enriched Nitrogen Doped-Graphene Quantum Dots Engineered NiCo_2S_4 Nanoarray as High-Efficiency Bifunctional Catalyst for Flexible Zn-Air Battery

机译:富含缺陷的氮气掺杂 - 石墨烯量子点工程为NiCO_2S_4纳米阵列作为柔性Zn-Air电池的高效双官能催化剂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Flexible Zn-air batteries have recently emerged as one of the key energy storage systems of wearable/portable electronic devices, drawing enormous attention due to the high theoretical energy density, flat working voltage, low cost, and excellent safety. However, the majority of the previously reported flexible Zn-air batteries encounter problems such as sluggish oxygen reaction kinetics, inferior long-term durability, and poor flexibility induced by the rigid nature of the air cathode, all of which severely hinder their practical applications. Herein, a defect-enriched nitrogen doped-graphene quantum dots (N-GQDs) engineered 3D NiCo_2S_4 nanoarray is developed by a facile chemical sulfuration and subsequent electrophoretic deposition process. The as-fabricated N-GQDs/NiCo_2S_4 nanoarray grown on carbon cloth as a flexible air cathode exhibits superior electrocatalytic activities toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), outstanding cycle stability (200 h at 20 mA cm~(-2)), and excellent mechanical flexibility (without observable decay under various bending angles). These impressive enhancements in electrocatalytic performance are mainly attributed to bifunctional active sites within the N-GQDs/NiCo_2S_4 catalyst and synergistic coupling effects between N-GQDs and NiCo_2S_4. Density functional theory analysis further reveals that stronger OOH* dissociation adsorption at the interface between N-GQDs and NiCo_2S_4 lowers the overpotential of both ORR and OER.
机译:柔性Zn-Air电池最近被出现为可穿戴/便携式电子设备的关键储能系统之一,由于高理论能量密度,扁平工作电压,低成本和优异的安全性,引起了巨大的关注。然而,前面报道的柔性Zn-Air电池的大多数遇到了诸如缓慢的氧气反应动力学,较差的长期耐久性,并且由空气阴极的刚性性质引起的较差的柔韧性,所有这些都严重阻碍了它们的实际应用。在此,通过容易化学硫化和随后的电泳沉积工艺开发了一种富含富含富含氮的氮掺杂 - 石墨烯量子点(N-GQDS)工程化3D Nico_2S_4纳米阵列。作为柔性空气阴极的碳布上生长的AS制造的N-GQDS / NICO_2S_4纳米纳纳脉脉,朝向氧还原反应(ORR)和氧气进化反应(OER),突出的循环稳定性(200h在20 mA cm〜200h)上具有优异的电催化活性。 (-2)),优异的机械柔性(在不同弯曲角度下没有可观察的衰减)。这些令人印象深刻的电催化性能的增强主要归因于N-GQDS / NiCO_2S_4催化剂内的双官能活性位点和N-GQDS和Nico_2S_4之间的协同偶联效应。密度函数理论分析进一步揭示了N-GQD和Nico_2S_4之间的界面处的更强的OOH *解离吸附,降低了ORR和OER的过电位。

著录项

  • 来源
    《Small》 |2019年第44期|共11页
  • 作者单位

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

    Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L3G1 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    bifunctional catalysts; flexible Zn-air batteries; NiCo2S4 nanoarrays; nitrogen-doped graphene quantum dots;

    机译:双功能催化剂;柔性Zn-air电池;Nico2S4纳米阵列;氮掺杂石墨烯量子点;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号