首页> 外文期刊>Smart Materials & Structures >Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing
【24h】

Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing

机译:压电纳米复合材料在梭织弹性织物上的分配器印刷和可耐皮带拉伸传感的滞后补偿

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, piezo-resistive nanocomposites have emerged as an important smart material for realizing less obtrusive and more comfortable stretch sensing applications. To manufacture cost-effective and skin-mountable stretch sensor, dispenser printing is advantageous method because piezo-resistive nanocomposites can be directly printed on a woven elastic fabric in various patterns. However, both electrical and mechanical properties of the nanocomposites need to be modulated to achieve favorable sensing performance as well as strong adhesion between the nanocomposite and the fabric to sustain large strains. Moreover, inherent hysteretic behavior of the soft nanocomposite should be compensated to obtain consistent stretch sensing. This paper presents silicone rubber mixed with long multi-walled carbon nanotubes (Long-MWCNTs) composites as a piezo-resistive transducing material for dispenser printing. High aspect ratio of the Long-MWCNTs resulted in low viscosity of a liquid state nanocomposite and high electrical conductivity. Due to the low viscosity, the liquid state nanocomposite could permeate into gaps of the woven elastic fabrics and ensured strong bonding force in large strains up to 35%. In addition, a modified Prandtl-Ishilinskii (MPI) model was adopted to compensate for piezo-resistive hysteresis of the nanocomposite. For validation, the skin-mountable sensor was applied to estimate rotation angle of a wrist. The sensor system estimated the rotation angle of the wrist with an estimation error of 1.93 degrees within 65 degrees range (2.9%) for the step increment and decrement test, and 7.15 degrees within 75 degrees range (9.5%) for the arbitrary movement test. Thus, the experimental results show that the dispenser printing method incorporated with hysteresis compensation can provide a guideline to implement skin-mountable smart fabrics for stretch sensing using various nanocomposites
机译:最近,压电纳米复合材料是一种重要的智能材料,用于实现更不突出且更舒适的拉伸传感应用。为了制造成本效益和可耐皮带的拉伸传感器,分配器印刷是有利的方法,因为压电纳米复合材料可以在各种图案中直接印刷在织造弹性织物上。然而,需要调节纳米复合材料的电气和机械性能以实现有利的感测性能以及纳米复合材料和织物之间的强粘附性以维持大菌株。此外,应补偿软纳米复合材料的固有滞后行为,以获得一致的拉伸感测。本文将硅橡胶呈现与长多壁碳纳米管(长MWCNT)复合材料混合,作为用于分配器印刷的压电型转换材料。长MWNT的高纵横比导致液态纳米复合材料和高电导率的低粘度。由于低粘度,液态纳米复合材料可以渗透到织造弹性织物的间隙中,并确保大菌株的强粘合力高达35%。此外,采用改进的Prandtl-Ishilinskii(MPI)模型来补偿纳米复合材料的压电滞后。为了验证,施加可皮肤的传感器以估计手腕的旋转角度。传感器系统估计手腕的旋转角度,在65度范围内(2.9%)内的估计误差为1.93度(2.9%),对于任意运动测试,75度范围内的7.15度(9.5%)。因此,实验结果表明,包含滞后补偿的分配器印刷方法可以提供用于使用各种纳米复合材料实现可耐皮肤智能织物的指导

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号