...
首页> 外文期刊>Smart Materials & Structures >Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle
【24h】

Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle

机译:通过骨骼肌启发的不对称多个模块化结构的能量捕获和储存

获取原文
获取原文并翻译 | 示例
           

摘要

The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro-and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.
机译:从其纳米级交叉桥的组装成微型组件的骨骼肌的显着多功能性和适应性,该骨骼肌肉成为SARCOMERES的微级组件为开发先进的自适应结构和材料系统提供了极大的启发。通过交叉桥梁的能力来捕获弹性应变能量,以提高突然运动和重复运动的能量效率,并通过跨越电力行程和萨拉韦收缩行为的模型,其中包含不对称,双稳态潜在能源景观,这项研究开发和研究模块化机械结构,以陷阱和储存更高能量的配置。首先设计和制造具有可定制不对称双空性的模块,揭示几何参数如何影响所产生的双井能量景观的不对称性。然后用数值和分析方法研究这些实验观察的特征,以表征不对称的双稳态模块的动态。这种模块的组装成更大的结构产生复杂的多孔能量景观,具有稳定的系统配置,其具有不同数量的存储的弹性潜在能量。动态分析说明了这些结构由于脉冲激发作为可恢复的应变势能而捕获初始动能的一部分的能力,并揭示了微型和纳米级应用影响中的刚度参数,阻尼和热噪声的存在。能量捕获行为。所获得的见解可以促进由骨骼肌启发的先进结构/材料系统的开发,包括有效捕获,储存和释放能量以及适应性,鲁棒和可重复使用的装甲和保护装置的执行器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号