...
首页> 外文期刊>Nano Energy >Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction
【24h】

Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction

机译:同时有效的磷酸盐和氧空位的高效光吸收和电荷传输局限于抗钨原子层触发鲁棒太阳二氧化碳减少

获取原文
获取原文并翻译 | 示例

摘要

The fundamental catalytic limitations for the photoreduction of CO2 still remain: low efficiency, poor charge transport and short lifetime of catalysts. To address the critical challenges, an efficient strategy based on spatial location engineering of phosphate (PO4) and oxygen-vacancy (V-o) confined in Bi2WO6 (BWO) atomic layers is employed to establish and explore an intimate functional link between the electronic structures and activities of V-o-PO4-BWO layers. Both theoretical and experimental results reveal, the V-o-PO4-BWO layers not only narrow the band gap from the UV to visible-light region but also reduce the resistance. The time-resolved photoluminescence decay spectra exhibit the increasing carrier lifetime for V-o-PO4-BWO layers, indicating the improved charge separation and transfer efficiency. As expected, the V-o-PO4-BWO layers with the simultaneously efficient light absorption and charge transport properties achieve much higher methanol formation rate of 157 mu mol g(-1) h(-1), over 2 and 262 times larger than that of BWO atomic layers and bulk BWO. This work may reveal that the light absorption and spatial charge transport over atomic layers could benefit CO2 conversion and shed light on the design principles of efficient photocatalysts towards solar conversion applications.
机译:CO2光射的根本催化限制仍然存在:低效率,电荷差和催化剂短寿命。为了解决关键挑战,采用基于Bi2WO6(BWO)原子层的磷酸盐(PO4)和氧空位(VO)的空间位置工程的有效策略来建立和探索电子结构和活动之间的紧密功能联系VO-PO4-BWO层。理论和实验结果揭示,V-O-PO4-BWO层不仅将带隙与UV与可见光区域缩小,而且还降低了电阻。时间分辨的光致发光衰减光谱表现出V-O-PO4-BWO层的增加的载体寿命,表明改善的电荷分离和转移效率。如预期的那样,具有同时有效的光吸收和电荷运输性能的VO-PO4-BWO层可实现更高的甲醇形成速率为157μmolg(-1)H(-1),超过2%和262倍。 BWO原子层和散装BWO。这项工作可能表明,原子层的光吸收和空间电荷传输可以利用二氧化碳转化和脱落的光催化对太阳能转化应用的设计原理。

著录项

  • 来源
    《Nano Energy 》 |2017年第2017期| 共8页
  • 作者单位

    Dalian Univ Technol DUT KTH Joint Educ &

    Res Ctr Mol Devices State Key Lab Fine Chem Inst Artificial Photosynt Dalian 116024 Peoples R China;

    Dalian Univ Technol DUT KTH Joint Educ &

    Res Ctr Mol Devices State Key Lab Fine Chem Inst Artificial Photosynt Dalian 116024 Peoples R China;

    Dalian Univ Technol DUT KTH Joint Educ &

    Res Ctr Mol Devices State Key Lab Fine Chem Inst Artificial Photosynt Dalian 116024 Peoples R China;

    Chinese Acad Sci Beijing Ctr Crystal Res &

    Dev Tech Inst Phys &

    Chem Beijing 100190 Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Beijing Ctr Crystal Res &

    Dev Tech Inst Phys &

    Chem Beijing 100190 Peoples R China;

    Dalian Univ Technol DUT KTH Joint Educ &

    Res Ctr Mol Devices State Key Lab Fine Chem Inst Artificial Photosynt Dalian 116024 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程 ;
  • 关键词

    Solar CO2 reduction; Oxygen vacancy; Atomic Layers; Light absorption; Charge transport;

    机译:太阳二氧化碳减少;氧气空位;原子层;光吸收;电荷运输;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号