首页> 外文期刊>Separation and Purification Technology >New insights on microwave induced rapid degradation of methyl orange based on the joint reaction with acceleration effect between electron hopping and Fe2+-H2O2 reaction of NiFeMnO4 nanocomposites
【24h】

New insights on microwave induced rapid degradation of methyl orange based on the joint reaction with acceleration effect between electron hopping and Fe2+-H2O2 reaction of NiFeMnO4 nanocomposites

机译:基于电子跳跃与NIFEMNO4纳米复合材料的电子跳跃和Fe2 + -H2O2反应的关节反应,微波诱导微波诱导甲基橙快速降解的新见解

获取原文
获取原文并翻译 | 示例
           

摘要

An innovative approach using thermal sensitizer NiFeMinO(4) under microwave (MW)-H2O2 condition was proposed to remove organic pollutant of model wastewater. The removal efficiency of 30.0 mg/L methyl orange for NiFeMnO4 under MW-H2O2 condition in 6.0 min reached up to 96.5%, which is larger than that for activated carbon under same MW-Fenton condition. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that the NiFeMnO4 power with an average size of less than 40 nm and specific surface areas (19.87 m(2)/g) had a spinel-type cubic structure, in which Ni2+, Mn3+, Mn4+, Fe3+ and Fe2+ occupied the octahedral sites of NiFeMnO4 lattice. The studies of low-temperature thermal degradation, microwave induced oxidation, microwave combining with H2O2 catalytic behavior and effect of active species for NiFeMnO4 indicated that the feasibility to MW-NiFeMnO4-H2O2 route had been successfully verified and joint reaction with acceleration effect of the direct decomposition by MW "hot spots", the MW "hot spots" accelerated electron-hole excitation and Fe2+-H2O2 reaction was responsible for the degradation of methyl orange in NiFeMinO(4)-MW-H2O2 system.
机译:提出了一种在微波(MW)-H2O2条件下使用热敏敏化剂Nifemino(4)的创新方法,以除去模型废水的有机污染物。在6.0分钟内的MW-H 2 O 2条件下Nifemno4的去除效率为30.0mg / l甲基橙,达到高达96.5%,比在相同MW-FENTON条件下大于活性炭的96.5%。 X射线衍射(XRD),X射线光电子体光谱(XPS),Brunauer-Emmett-Teller(Bet)方法,傅里叶变换红外光谱(FT-IR),拉曼光谱,扫描电子显微镜(SEM)和透射电子显微镜(TEM)证实,平均尺寸小于40nm和比表面积(19.87μm(2)/ g)的Nifemno4功率具有尖晶石型立方结构,其中Ni2 +,Mn3 +,Mn4 +,Fe3 +和Fe2 +占用nifemno4格子的八面体遗址。低温热降解,微波诱导的氧化,微波与H2O2催化行为的研究和Nifemno4的活性物种的影响表明,对MW-Nifemno4-H2O2途径的可行性已成功验证和联合反应直接的加速效应通过MW“热点”分解,MW“热点”加速电子 - 空穴激发和Fe2 + -H2O2反应负责Nifemino(4)-MW-H2O2系统中甲基橙的降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号