...
首页> 外文期刊>Separation and Purification Technology >Hollow fiber-based rapid temperature swing adsorption process for carbon capture from coal-fired power plants
【24h】

Hollow fiber-based rapid temperature swing adsorption process for carbon capture from coal-fired power plants

机译:基于中空纤维的快速升温吸附吸附过程,用于燃煤发电厂的碳捕获

获取原文
获取原文并翻译 | 示例

摘要

Post-combustion carbon capture is one of the feasible methods to reduce emission of carbon dioxide (CO2) from coal-fired power plants. The biggest challenge in this technology is reduction of energy consumption. This work proposes a hollow fiber based rapid temperature swing adsorption (RTSA) method for capturing CO2 from typical coal-fired power plants. The proposed RTSA approach can shorten the operating time and using low-grade energy for regeneration of adsorption elements. In this study, the tank-in-series model is used to simulate the RTSA process including adsorption and desorption periods. A dual-column operating procedure is then used to treat the flue gas continuously from the coal-fired power plants. Main operating variables including inlet gas volume flow rate (0.1-0.2 m(3)/s), abandon time (0-10 s), desorption temperature (80-120 degrees C) on key performance factors such as discharge gas purity, capture ratio of CO2, and energy consumption per unit CO2, etc. are investigated for reducing the energy consumption. This study found that the inlet gas volume flow rate will significantly affect the capture ratio, where smaller gas volume flow rate would be beneficial to increase capture ratio. The abandon time obviously affects the purity of the captured CO2, where the longer abandon time leads to higher purity. Desorption temperature affects both the capture ratio and purity of captured CO2. The higher the desorption temperature, the greater the purity and capture ratio. For one typical basic unit with dual-column hollow fiber-based RTSA, the study found that when the inlet gas volume flow rate is 0.12 m(3)/s, the desorption waiting time is 7 s, and the desorption temperature is 120 degrees C, both the CO2 purity and capture ratio can exceed 90%. With considering the possibility of using steam in a low-pressure turbine as a source of heat required for Dual column vacuum RTSA (DC-vRTSA), the impact on the efficiency and stream data of typical coal-fired power plants are calculated. DC-vRTSA at 120 degrees C, 100 degrees C and 80 degrees C will reduce the efficiency of coal-fired power plants by 8.2%, 6%, and 3.4%, respectively.
机译:燃烧后碳捕获是从燃煤发电厂减少二氧化碳(CO2)排放的可行方法之一。这项技术的最大挑战是减少能源消耗。该工作提出了一种基于中空纤维的快速升温吸附(RTSA)方法,用于捕获典型的燃煤发电厂的CO2。所提出的RTSA方法可以缩短操作时间并使用低级能量进行吸附元素的再生。在这项研究中,罐内模型用于模拟包括吸附和解吸期的RTSA过程。然后使用双柱操作步骤从燃煤发电厂中连续地处理烟道气。主工作变量包括入口气体体积流量(0.1-0.2米(3)/ s),放弃时间(0-10秒),解吸温度(80-120℃),如放电气体纯度,捕获研究了CO2的比例,以及每单位CO 2的能量消耗等,用于降低能量消耗。该研究发现入口气体体积流量会显着影响捕获比,其中较小的气体体积流量将有利于提高捕获比率。放弃时间显然影响了捕获的二氧化碳的纯度,在那里更长的放弃时间导致更高的纯度。解吸温度影响捕获的CO2的捕获比和纯度。解吸温度越高,纯度和捕获比越高。对于具有双柱中空纤维的RTSA的一个典型的基本单元,研究发现,当入口气体体积流速为0.12μm(3)/ s时,解吸等待时间为7秒,解吸温度为120度C,二氧化碳纯度和捕获率均均可超过90%。考虑到在低压涡轮机中使用蒸汽作为双柱真空RTSA(DC-VRTSA)所需的热源的可能性,计算了对典型燃煤发电厂的效率和流数据的影响。 DC-VRTSA在120摄氏度下,100摄氏度和80摄氏度,将燃煤发电厂的效率降低8.2%,6%和3.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号