首页> 外文期刊>Agricultural and Forest Meteorology >Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach
【24h】

Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach

机译:使用AmeriFlux数据和人工神经网络方法评估大气二氧化碳对美国本土陆地生态系统总初级生产力和净生态系统交换的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative understanding of regional gross primary productivity (GPP) and net ecosystem exchanges (NEE) and their responses to environmental changes are critical to quantifying the feedbacks of ecosystems to the global climate system. Numerous studies have used the eddy flux data to upscale the eddy covariance derived carbon fluxes from stand scales to regional and global scales. However, few studies incorporated atmospheric carbon dioxide (CO2) concentrations into those extrapolations. Here, we consider the effect of atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux tower of NEE and the derived GPP to the conterminous United States. Two ANN models incorporating remote sensing variables at an 8-day time step were developed. One included CO2 as an explanatory variable and the other did not. The models were first trained, validated using eddy flux data, and then extrapolated to the region at a 0.05 degrees x 0.05 degrees (latitude x longitude) resolution from 2001 to 2006. We found that both models performed well in simulating site-level carbon fluxes. The spatially averaged annual GPP with and without considering the atmospheric CO2 were 789 and 788 g Cm-2 yr(-1), respectively (for NEE, the values were 112 and 109 g Cm-2 yr(-1), respectively). Model predictions were comparable with previous published results and MODIS GPP products. However, the difference in GPP between the two models exhibited a great spatial and seasonal variability, with an annual difference of 200 g Cm-2 yr(-1). Further analysis suggested that air temperature played an important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to droughts in part of the US in 2006. The study suggests that the spatially and temporally varied atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy flux data to a region. (C) 2016 Elsevier B.V. All rights reserved.
机译:对区域总初级生产力(GPP)和净生态系统交换(NEE)及其对环境变化的响应的定量理解对于量化生态系统对全球气候系统的反馈至关重要。许多研究已使用涡流数据将涡度协方差推导的碳通量从林分尺度扩大到区域尺度和全球尺度。但是,很少有研究将大气中的二氧化碳(CO2)浓度纳入这些推断中。在这里,我们考虑了使用人工神经网络(ANN)方法将NEE的AmeriFlux塔和派生的GPP扩展到美国本土的影响。开发了两个在8天时间步长内结合了遥感变量的ANN模型。一个包括二氧化碳作为解释变量,另一个没有。首先对模型进行训练,使用涡流数据进行验证,然后从2001年至2006年以0.05度x 0.05度(纬度x经度)的分辨率外推到该区域。我们发现这两种模型在模拟站点级碳通量方面均表现出色。不考虑大气二氧化碳的空间平均年度GPP分别为789和788 g Cm-2 yr(-1)(对于NEE,分别为112和109 g Cm-2 yr(-1))。模型预测与先前发布的结果和MODIS GPP产品相当。但是,这两个模型之间的GPP差异显示出很大的空间和季节变异性,年差异为200 g Cm-2 yr(-1)。进一步的分析表明,气温在确定大气中二氧化碳对碳通量的影响中起着重要作用。此外,没有考虑大气CO2的模拟未能检测到2006年美国部分地区干旱对生态系统的响应。研究表明,将涡流数据按比例缩放至一个地区。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号