首页> 外文期刊>Seminars in Nuclear Medicine >Radiation Imagers for Quantitative, Single-particle Digital Autoradiography of Alpha- and Beta-particle Emitters
【24h】

Radiation Imagers for Quantitative, Single-particle Digital Autoradiography of Alpha- and Beta-particle Emitters

机译:辐射成像仪的α-和β-粒子发射器的定量,单粒子数字放射图

获取原文
获取原文并翻译 | 示例
           

摘要

Promising therapies are being developed or are in early-stage clinical trials that employ the use of alpha- and beta-emitting radionuclides to cure hematologic malignancies. However, these targeted radionuclide therapies have not yet met their expected potential for cancer treatment. A primary reason is lack of biodistribution, dosimetry, and dose-response information at cellular levels, which are directly related to optimal targeting, achieving a requisite therapeutic dose, and assessing the safety profile in normal organs and tissues. The current set of imaging tools, such as film autoradiography, scintigraphy, and SPECT/CT, available to researchers and clinicians do not allow the effective assessment of radiation absorbed dose distributions at cellular levels because resolutions are poor, measurement and analytical times are long, and the spatial resolutions are low generally resulting in poor signal-to-noise ratios. Recently, new radiation digital autoradiography imaging tools have been developed that promise to address these challenges. They include scintillation-, gaseous-, and semiconductor-based radiation-detection technologies that localize the emission location of charged particles on an event-by-event basis at resolutions up to 20 mu m FWHM for alpha and beta emitters. These imaging systems allow radionuclide activity concentrations to be quantified to unprecedented levels (mBq/mu g) and provide real-time imaging and simultaneous imaging capabilities of both high- and low-activity samples without dynamic range limitations that plague traditional autoradiography. Additionally, large-area imagers are available (20 x 20 cm(2)) to accommodate high-throughput imaging studies. This article reviews the various detector classes and their associated performance trade-offs to provide researchers with an overview of the current technologies available for selecting an optimal detector configuration to meet imaging requirement needs. (C) 2018 Elsevier Inc. All rights reserved.
机译:正在开发有前途的疗法或正在进行早期临床试验,该试验采用α-和β发射的放射性核素来治疗血液学恶性肿瘤。然而,这些靶向放射性核素疗法尚未达到其预期癌症治疗的潜力。主要原因是缺乏细胞水平的生物分布,剂量测定和剂量 - 反应信息,其与最佳靶向直接相关,实现必要的治疗剂量,并评估正常器官和组织中的安全性曲线。目前的一组成像工具,如薄膜放射造影,Scintigraphy和Spect / CT,可用于研究人员和临床医生,不允许在细胞水平上有效评估辐射吸收剂量分布,因为分辨率差,测量和分析时间很长,并且空间分辨率低通常导致信噪比差。最近,已经开发了新的辐射数字放射模型成像工具,以解决这些挑战。它们包括闪烁,气体和基于半导体的辐射检测技术,其在逐个事件基础上定位带电粒子的发光定位,该方法对于α和β发射器的分辨率。这些成像系统允许将放射性核素活性浓度定量为上所前所未有的水平(MBQ / mu g),并提供高活度样本的实时成像和同时显像能力,而不具有扰乱传统放射造影的动态范围限制。此外,可以使用大区域成像仪(& 20 x 20 cm(2))以适应高通量的成像研究。本文审查了各种探测器课程及其相关性能权衡,为研究人员提供了用于选择最佳探测器配置的当前技术,以满足成像需求。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号