...
首页> 外文期刊>Agricultural and Forest Meteorology >Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys
【24h】

Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys

机译:干旱和气候变化下的北方白杨林净生态系统生产力:Ecosys的数学模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The net ecosystem productivity (NEP) of boreal aspen is strongly affected by comparative rates of annual potential evapotranspiration (E sub(a)) and precipitation (P sub(a)). Changes in E sub(a) versus P sub(a) during future climate change will likely determine changes in aspen NEP and consequently the magnitude of the carbon sink/source of a significant part of the boreal forest. We hypothesize that the effects of E sub(a) versus P sub(a) on aspen NEP can be modelled with a soil-root-canopy hydraulic resistance scheme coupled to a canopy energy balance closure scheme that determines canopy water status and thereby CO sub(2) uptake. As part of the ecosystem model ecosys, these schemes were used to model diurnal declines in CO sub(2) and latent heat (LE) exchange during a 3-year drought (2001-2003) at the Fluxnet-Canada Research Network (FCRN) southern old aspen site (SOA). These declines were consistent with those measured by eddy covariance (EC) at SOA, except that ecosystem CO sub(2) effluxes modelled during most nights were larger that those measured by EC or gap-filled from other EC measurements. Soil CO sub(2) effluxes in the model were close to, but sometimes smaller than, those measured by automated surface chambers at SOA. Diurnal declines in CO sub(2) exchange during the drought caused declines in annual NEP in the model, and in gap-filled EC measurements (model versus EC in g C m super(-2): 275 versus 367 +/- 110 in 2001, 82 versus 144 +/- 43 in 2002 and 23 versus 104 +/- 31 in 2003). Lower modelled NEP was attributed to the larger modelled CO sub(2) effluxes. Ecosys was then used to predict changes in aspen net biome productivity (NBP = NEP - C lost from disturbance) caused by 6-year versus 3-year recurring droughts during 100- year fire cycles under current climate versus climate change projected under the IPCC SRES A1B scenario. Although NBP was adversely affected during recurring 6- year droughts under current climate, it recovered quickly during non-drought years so that long-term NBP was maintained at 4 g C m super(-2) year super(-1). NBP rose by 10, 108 and 126 g C m super(-2) year super(-1) during the first, second and third centuries under climate change with recurring 3-year droughts, indicating a gradual rise in sink activity by boreal aspen. However recurring 6-year droughts during climate change caused recurring negative NBP (C losses), gradually depleting aspen C reserves and eventually causing dieback of the aspen overstory during the third century of climate change. This dieback was followed by a large decline in NBP. We conclude that NBP of boreal aspen will rise gradually under current projections of climate change, except under prolonged (e.g. 6 years) recurring droughts, which would eventually cause aspen to die back and substantial amounts of C to be lost.
机译:北方白杨的净生态系统生产力(NEP)受到年潜在蒸散量(E sub(a))和降水量(P sub(a))的相对比率的强烈影响。在未来的气候变化中,E sub(a)与P sub(a)的变化很可能决定白杨NEP的变化,从而决定北方森林大部分碳汇/碳源的大小。我们假设E sub(a)和P sub(a)对白杨NEP的影响可以用土壤-根冠层水力阻力方案与冠层能量平衡封闭方案耦合来确定,该方案确定冠层水状态,从而确定CO (2)摄取。作为生态系统模型ecosys的一部分,在Fluxnet-Canada Research Network(FCRN)的3年干旱期间(2001-2003年),这些方案被用于模拟CO sub(2)和潜热(LE)交换的日下降。南部的老白杨遗址(SOA)。这些下降与SOA处的涡度协方差(EC)所测得的结果一致,只是在大多数夜晚模拟的生态系统CO sub(2)流量大于EC所测得的值或与其他EC测值所填补的差值。该模型中的土壤CO sub(2)流量与SOA的自动表面处理室所测量的流量接近,但有时小于。干旱期间CO sub(2)交换的日减少导致模型中年度NEP的下降以及空白测量的EC测量值(模型与g C m super(-2)中的EC的关系:275与367 +/- 110中的g C m的关系)。 2001、82和2002年的144 +/- 43和2003年的23的104 +/- 31)。较低的模型NEP归因于较大的模型CO sub(2)外排。然后使用Ecosys预测当前气候下100年火灾周期中6年对3年反复干旱造成的白杨净生物群落生产力变化(NBP = NEP-C因干扰而损失)与IPCC SRES预测的气候变化相比A1B方案。尽管NBP在当前气候下连续6年干旱期间受到不利影响,但在非干旱年份迅速恢复,因此长期NBP维持在4 g C m super(-2)年super(-1)。在气候变化下的第一个,第二个和第三个世纪,随着3年反复干旱,NBP上升了10、108和126 g C m super(-2)年super(-1),表明北方白杨的下沉活动逐渐增加。 。然而,在气候变化期间反复发生的6年干旱导致NBP反复出现负值(碳损失),逐渐耗尽了白杨C的储量,并最终导致了在气候变化的三世纪期间白杨的历史上的枯竭。这种消退之后是NBP的大幅下降。我们得出的结论是,在长期(例如6年)的反复干旱下,北方白杨的NBP会在当前的气候变化预测下逐渐上升,这最终会导致白杨死亡和大量C的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号