首页> 外文期刊>Agricultural and Forest Meteorology >Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling
【24h】

Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling

机译:使用涡度协方差通量测量和建模,在发育的玉米作物上,气孔和非气孔吸收之间的臭氧沉积分配

获取原文
获取原文并翻译 | 示例
       

摘要

Ozone (O sub(3)) flux measurements, obtained by eddy-covariance technique, over a developed maize crop were used to partition the overall O sub(3) deposition between stomatal and non-stomatal uptakes. Data were analysed using a big-leaf model, which was developed from current knowledge on O sub(3) deposition. The classical parameters used in dry deposition models (i.e. the in-canopy aerodynamic resistance R sub(a) sub(c), the intrinsic ground resistance R sub(i) sub(g) and the cuticular resistance R sub(c) sub(u) sub(t)) were determined for the maize crop from the relationship between the experimental non-stomatal conductance (g sub(n) sub(s)) and the friction velocity (u sub(*)) in dry conditions (relative humidity (RH)<60%). g sub(n) sub(s) was determined as the difference between the O sub(3) canopy conductance (g sub(c)) and the O sub(3) stomatal conductance (g sub(s)), where g sub(s) was estimated by a method which combines the Penman-Monteith approach and the use of the CO sub(2) assimilation flux. Data analysis revealed that chemical reactions between O sub(3) and nitrogen monoxide (NO) between the canopy top and the O sub(3) flux measurement level (z sub(m)) could induce high values of the observed O sub(3) conductance, not representative of ozone deposition to the canopy. The actual O sub(3) canopy conductance was derived from the observed O sub(3) conductance by including a correction term function of z sub(m) and the NO concentration at this height, based on the previous studies on O sub(3) destruction above canopies. The estimations of R sub(a) sub(c), R sub(i) sub(g) and R sub(c) sub(u) sub(t) given by the non-linear regression of g sub(n) sub(s)vsu sub(*) are in agreement with previously published results. Our analysis also confirms previous studies which have shown that the cuticular conductance (g sub(c) sub(u) sub(t)) increases exponentially with RH, and we propose a new parameterization of g sub(c) sub(u) sub(t) as a function of RH, based on experimental evidence. Using our model to partition the total O sub(3) deposition to the canopy, we showed that the relative contributions of stomatal and non-stomatal uptakes varied strongly with the physiological activity of the maize and the meteorological conditions. This point is of major importance for studies dedicated to the impact of ozone on plant physiology, since it emphasizes the necessity to determine accurately the amount of O sub(3) actually absorbed by the plants via their stomatal activity.
机译:通过涡度协方差技术对发达玉米作物进行的臭氧(O sub(3))通量测量,用于在气孔和非气孔吸收之间分配总体O sub(3)沉积。使用大叶模型分析数据,该模型是根据有关O sub(3)沉积的最新知识开发的。干沉降模型中使用的经典参数(即顶棚内空气动力阻力R sub(a)sub(c),固有地面阻力R sub(i)sub(g)和表皮阻力R sub(c)sub(通过在干燥条件下(相对)的实验非气孔导度(g sub(n)sub(s))和摩擦速度(u sub(*))之间的关系确定玉米作物的u)sub(t))湿度(RH)<60%)。 g sub(n)sub被确定为O sub(3)冠层电导(g sub(c))和O sub(3)气孔导度(g sub(s))之间的差,其中g sub (s)通过结合Penman-Monteith方法和使用CO sub(2)同化通量的方法进行估算。数据分析显示,O sub(3)与冠层顶面和O sub(3)通量测量水平(z sub(m))之间的一氧化氮(NO)之间的化学反应可能会诱导观测到的O sub(3)较高)电导率,不代表臭氧沉积到机盖中。根据先前对O sub(3)的研究,通过包括z sub(m)的校正项函数和该高度处的NO浓度,从观察到的O sub(3)电导导出实际的O sub(3)冠层电导。 )在树冠上方破坏。通过g sub(n)sub的非线性回归给出的R sub(a)sub(c),R sub(i)sub(g)和R sub(c)sub(u)sub(t)的估计vsu sub(*)与先前发布的结果一致。我们的分析还证实了先前的研究,这些研究表明表皮电导(g sub(c)sub(u)sub(t))随着RH呈指数增长,并且我们提出了g sub(c)sub(u)sub的新参数化(t)是相对湿度的函数,基于实验证据。使用我们的模型将总的O sub(3)沉积物分配到冠层,我们发现气孔和非气孔吸收的相对贡献随玉米的生理活性和气象条件而变化很大。这一点对于专门研究臭氧对植物生理的影响至关重要,因为它强调必须准确确定植物通过气孔活动实际吸收的O sub(3)的量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号