...
首页> 外文期刊>Agricultural and Forest Meteorology >Predicting and mitigating the net greenhouse gas emissions of crop rotations in western Europe.
【24h】

Predicting and mitigating the net greenhouse gas emissions of crop rotations in western Europe.

机译:预测和减轻西欧作物轮作的温室气体净排放量。

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHGs) contributing to net greenhouse gas balance of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires capacity to predict the net exchanges of these gases in a systemic approach, as related to environmental conditions and crop management. Here, we used experimental data sets from intensively monitored cropping systems in France and Germany to calibrate and evaluate the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved major crop types (maize-wheat-barley-rapeseed) on loam and rendzina soils. The model was subsequently extrapolated to predict CO2 and N2O fluxes over entire crop rotations. Indirect emissions (IE) arising from the production of agricultural inputs and from use of farm machinery were also added to the final greenhouse gas balance. One experimental site (involving a maize-wheat-barley-mustard rotation on a loamy soil) was a net source of GHG with a net GHG balance of 670 kg CO2-C eq ha-1 yr-1, of which half were due to IE and half to direct N2O emissions. The other site (involving a rapeseed-wheat-barley rotation on a rendzina) was a net sink of GHG for -650 kg CO2-C eq ha-1 yr-1, mainly due to high C returns to soil from crop residues. A selection of mitigation options were tested at one experimental site, of which straw return to soils emerged as the most efficient to reduce the net GHG balance of the crop rotation, with a 35% abatement. Halving the rate of N inputs only allowed a 27% reduction in net GHG balance. Removing the organic fertilizer application led to a substantial loss of C for the entire crop rotation that was not compensated by a significant decrease of N2O emissions due to a lower N supply in the system. Agro-ecosystem modeling and scenario analysis may therefore contribute to design productive cropping systems with low GHG emissions.
机译:一氧化二氮,二氧化碳和甲烷是导致农业生态系统净温室气体平衡的主要生物温室气体(GHG)。因此,要评估农业对气候的影响,就需要有能力以系统的方式预测这些气体与环境条件和作物管理有关的净交换量。在这里,我们使用了来自法国和德国的集约化耕作系统的实验数据集,以校准和评估生物物理作物模型CERES-EGC在样地规模上模拟温室气体交换的能力。实验涉及壤土和伦兹纳土壤上的主要农作物类型(玉米-小麦-大麦-油菜籽)。随后对该模型进行外推,以预测整个作物轮作期间的CO 2 和N 2 O通量。生产农业投入物和使用农业机械产生的间接排放也被添加到最终的温室气体收支平衡中。一个实验点(涉及在壤土上的玉米-小麦-大麦-芥末轮作)是GHG的净源,其净GHG平衡为670 kg CO 2 -C eq ha - 1 yr -1 ,其中一半归因于IE,另一半归因于N 2 O排放。另一个位点(在菜豆上旋转油菜-大麦-大麦)是-650 kg CO 2 -Ceq ha -1 yr < sup> -1 ,主要是由于高碳从农作物残渣返回土壤。在一个实验点对一系列缓解措施进行了测试,其中秸秆还田是减少作物轮作的净GHG平衡最有效的方法,减排量达35%。将氮输入量减半只能使温室气体净余额减少27%。取消施用有机肥导致整个作物轮作中的大量碳损失,但由于系统中氮供应减少,N 2 O排放量的显着减少无法弥补。因此,农业生态系统建模和情景分析可能有助于设计具有低温室气体排放的生产性种植系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号