首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile
【24h】

New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile

机译:智利EL罗马矿床磁铁矿矿石和煤矸石矿地球化学透露的Kiruna型氧化铁 - 磷灰石矿床的新贡献

获取原文
获取原文并翻译 | 示例
       

摘要

Iron oxide-apatite (IOA) or Kiruna-type deposits are an important source of iron and other elements including REE, U, Ag, and Co. The genesis of these deposits remains controversial, with models that range from a purely magmatic origin to others that involve variable degrees of hydrothermal fluid involvement. To elucidate the formation processes of this deposit type, we focused on the Chilean Iron Belt of Cretaceous age and performed geochemical analyses on samples from El Romeral, one of the largest IOA deposits in northern Chile. We present a comprehensive field emission electron microprobe analysis (FE-EMPA) dataset of magnetite, apatite, actinolite, pyroxene, biotite, pyrite, and chalcopyrite, obtained from representative drill core samples. Two different types of magnetite grains constitute the massive magnetite bodies: an early inclusion-rich magnetite (Type I); and a pristine, inclusion-poor magnetite (Type II) that usually appears as an overgrowth around Type I magnetite. High V (similar to 2500-2800 ppm) and Ti concentrations (similar to 80-3000 ppm), and the presence of high-temperature silicate mineral inclusions (e.g., pargasite, similar to 800-1020 degrees C) determined by micro-Raman analysis indicate a magmatic origin for Type I magnetite. On the other hand, high V (2300-2700 ppm) and lower Ti (50-400 ppm) concentrations of pristine, inclusion-poor Type II magnetite indicate a shift from magmatic to hydrothermal conditions for this mineralization event. Furthermore, the composition of primary actinolite (Ca- and Mg-rich cores) within Type II magnetite and the presence at depth of fluorapatite and high Co:Ni ratios ( 1-10) of pyrite mineralization are consistent with a high temperature (up to 840 degrees C) genesis for the deposit. At shallow depths of the deposit, the presence of pyrite with low Co:Ni ratios ( 0.5) and hydroxyapatite which contains higher Cl concentrations relative to F record a dominance of lower temperature hydrothermal conditions ( 600 degrees C) and a lesser magmatic contribution. This vertical zonation, which correlates with the sub-vertical shape of the massive iron ore bodies, is concordant with a transition from magmatic to hydrothermal domains described in several IOA deposits along the Chilean Iron Belt, and supports a magmatic-hydrothermal model for the formation of the El Romeral. The dose spatial and temporal association of the deposit with the Romeral Fault System suggests that a pressure drop related to changes in the tectonic stress had a significant impact on Fe solubility, triggering ore precipitation.
机译:氧化铁 - 磷灰石(IOA)或Kiruna型沉积物是铁和其他元素的重要来源,包括REE,U,AG和Co.这些存款的成因仍然存在争议,其模型范围从纯粹的岩石起源到他人这涉及可变程度的水热流体受累。为了阐明这种沉积物的形成过程,我们专注于白垩纪时代的智利铁带,并对智利北部最大的IOA沉积物之一进行地球化学分析。我们提出了一种综合的磁铁矿,磷灰石,抗碱铁矿,辉石,Biotite,硫铁矿和硫代铜矿的综合场发射电子微竞争分析(Fe-EMPA)数据集,从代表性钻孔核心样品获得。两种不同类型的磁铁矿晶粒构成巨大的磁铁矿:早期包含富含磁铁矿(I型);和通常在I型磁铁矿周围的过度生长的原始,包容性差的磁铁矿(II型)。高V(类似于2500-2800ppm)和Ti浓度(类似于80-3000ppm),以及通过微拉曼测定的高温硅酸盐矿物质夹杂物(例如,类似于800-1020℃)的高温硅酸盐矿物质夹杂物分析表明I型磁铁矿的岩石起源。另一方面,高V(2300-2700ppm)和较低的原始含量,含有差的II磁铁矿浓度表明从岩浆到这种矿化事件的水热条件的转变。此外,II型磁铁矿内的原发性胶石(富含核心)的组成和氟磷酸盐含量和高CO:Ni比率(& 1-10)的硫酸盐矿化的存在均一致地与高温相一致(高达840℃)沉积物的成因。在沉积物的浅深度下,具有低CO:Ni比率(<0.5)和羟基磷灰石的黄铁矿,其相对于F记录较低温度水热条件(&LT; 600℃)和较小的Cl浓度魔法贡献。这种与大量铁矿体的亚垂直形状相关的这种垂直区段是沿着智利铁带的几种IOA沉积物中描述的从岩浆到水热结构域的转变,并支持形成的Magmatic-Hymothermal模型埃尔罗马。用罗马式故障系统的沉积物剂量空间和时间关联表明,与构造应力变化有关的压降对Fe溶解度有显着影响,触发矿石沉淀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号