...
【24h】

Robust Inventory Management: An Optimal Control Approach

机译:强大的库存管理:最佳控制方法

获取原文
获取原文并翻译 | 示例
           

摘要

We formulate and solve static and dynamic models of inventory management that lie at the intersection of robust optimization and optimal control theory. Our objective is to minimize cumulative ordering, holding, and shortage costs over a horizon [0, T], where the variable is a nonnegative ordering rate function q(t) ∈ ?2[0, T]. The demand rate function d(t) is unknown and is only assumed to belong to an uncertainty set Ω={d(t)∈L2[0,T]:μa≤(1/T)∫0Td(t)dt≤μb,a≤d(t)≤b,?t∈[0,T]}; this set is motivated by the strong law of large numbers for stochastic processes limT→∞(1/T)∫0Td(t)dt=μ, where μ is the mean drift. We analyze a static model, where the ordering rate function must be fully specified at time zero, and three dynamic variants, where re-optimizations are allowed during the planning horizon [0, T] at prespecified review epochs. In the dynamic models, at review epoch τ ∈ [0, T], the past demand on [0, τ) is observable. In the first dynamic model, we ignore this information, and define a variant of Ω that is well formed for the remaining planning horizon [τ, T]. In the second model, we define a variant of Ω for [τ, T] that utilizes the past demand information, though we make a simplifying technical assumption about the consistency of the demand on [0, τ) and Ω. In the third dynamic model, we remove this assumption, and we remedy the arising complications using the Hilbert Projection Theorem. In all cases we derive optimal closed-form ordering rate functions that equal either the bounds a or b, or weighted averages of these bounds (sb + ha)/(s + h) or (sa + hb)/(s + h), where s and h are the shortage and holding costs, respectively. The strategies differ by when these four ordering rates are applied, which is determined by an uncertainty-set-dependent partition of the remaining planning horizon. Computational experiments, focused on studying the dynamic variants, supplement the analytical results, and demonstrate that (1) the three variants exh
机译:我们制定和解决静态和动态模型的库存管理,位于鲁棒优化和最优控制理论的交叉点。我们的目标是在地平线[0,T]上最小化累积排序,持有和短缺成本,其中变量是非负订购率Q(t)∈∈α2[0,t]。需求率D(t)未知,仅假定属于不确定性设定ω= {d(t)∈12[0,t]:μa≤(1 / t)∫0td(t)dt≤μb ,a≤d(t)≤b,Δt∈[0,t]};该组是由随机处理的大量大量的强烈定律,LIMT→∞(1 / T)∫0TD(t)dt =μ,其中μ是平均漂移。我们分析了一个静态模型,其中订购率函数必须在零时间和三个动态变体中完全指定,其中在预先评估时期的规划地平线[0,T]期间允许重新优化。在动态模型中,在审查epochτ∈∈[0,t],对[0,τ)的过去的需求是可观察到的。在第一个动态模型中,我们忽略了这些信息,并定义了ω的变型,该变型对于剩余的规划地平线[τ,t]。在第二种模型中,我们为使用过去的需求信息的[τ,t]定义ω的变型,尽管我们对[0,τ)和ω的需求的一致性进行了简化的技术假设。在第三种动态模型中,我们消除了这种假设,我们使用希尔伯特预测定理来补救出现的并发症。在所有情况下,我们得出了最佳的闭合形式排序率函数,其等于这些界限的界限A或B或加权平均值(SB + HA)/(S + H)或(SA + HB)/(S + H) ,其中S和H分别是短缺和持有费用。当应用这四个订购率时,策略因而由剩余规划地平线的不确定性集中依赖分区决定。计算实验,专注于研究动态变体,补充分析结果,并证明(1)三种变体EXH

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号