首页> 外文期刊>Agricultural and Forest Meteorology >Sensitivity and uncertainty of modelled terrestrial net primary productivity to doubled C02 and associated climate change for a relatively large perturbed physics ensemble
【24h】

Sensitivity and uncertainty of modelled terrestrial net primary productivity to doubled C02 and associated climate change for a relatively large perturbed physics ensemble

机译:对于相对较大的扰动物理系综,模拟的陆地净初级生产力对CO2倍增以及相关的气候变化的敏感性和不确定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Net primary productivity (NPP) is often modelled explicitly in general circulation models (GCMs) utilising process models that may include plant photosynthesis, respiration, allocation of photosynthates, phenology, mortality and competition between plant functional types. It is an important measure for understanding the role of terrestrial vegetation in the global carbon cycle, and useful for gaining insights into the large-scale, integrated effects of climate and atmospheric changes on potential plant productivity and associated impacts, i.e. food security and carbon cycle feedbacks. However, there are simplifications and uncertainties in GCM projections of future climate change, as well as further uncertainties involved in modelling the associatedterrestrial vegetation responses. In particular, it is important to highlight that many GCM simulations, including the ones used in this study, do not model nutrient limitation, even though primary plant nutrients, e.g. nitrogen and phosphorus, are keylimiting factors on plant productivity. Here, we examine sensitivities and uncertainties in large(global)-scaIe modelled NPP to climate and atmospheric carbon dioxide concentration [CO_2], utilising a relatively large perturbed physics ensemble (PPE) ofsimulations generated from the HadSM3 GCM under equilibrium doubling of pre-industrial atmospheric [CO_2]. We also exploit the ensemble design to highlight the relative importance of two, often opposing, forcings on NPP: (i) plant physiological responsesto CO_2, termed 'Phys'; and (ii) plant responses to physical drivers of climate, termed 'Rad'. It is important to note that this is a sensitivity study that provides useful guidance on the relative importance of the Rad and Phys drivers and their uncertainties. The results cannot be considered quantitatively realistic, particularly because the equilibrium experimental design and lack of nutrient limitation in the model are important limitations that prevent such interpretation. We find that doubled [CO_2] and associated climate changes ultimately increase potential global average NPP by 57%, from 0.293 kgcm~(-2)yr~(-1) (-36 PgCyr~(-1)) to 0.460 kg cm~(-2) yr~(-1) (~57 PgCyr~(-1)). Spatially, the largest decreases (—0.45 kg cm~(-2) yr~(-1)) occur across the north-east of South America in association with the largest decreases in precipitation. The largest increases (up to -0.75 kg cm~(-2) yr~(-1)) occur across tropical Africa and Indonesia, where NPP is already high, and both temperature and precipitation increase under doubled [CO_2 ]. In most regions where NPP shows an increase the changes are significantly larger than the ensemble standard deviation, indicating that increases in global NPP under doubled [CO_2 ] are reasonably robust. However, insome regions, particularly north-eastern South America and Central America, where NPP decreases are projected, the standard deviation across the ensemble is larger than the average NPP change, indicating that even the sign of the NPP sensitivity to doubled [CO_2] and climate is uncertain. These uncertainties are shown to be highly dependent on the relative sensitivities of NPP to the Phys and Rad forcings.
机译:净初级生产力(NPP)通常在通用循环模型(GCM)中使用过程模型进行显式建模,过程模型可能包括植物光合作用,呼吸作用,光合产物分配,物候,死亡率和植物功能类型之间的竞争。这是了解陆地植被在全球碳循环中的作用的一项重要措施,有助于深入了解气候和大气变化对潜在植物生产力及其相关影响(例如粮食安全和碳循环)的大规模综合影响反馈。但是,GCM对未来气候变化的预测存在简化和不确定性,并且在模拟相关的地面植被响应时还涉及更多不确定性。特别要强调的是,即使主要的植物营养素,例如本研究中的许多GCM模拟,包括本研究中使用的模拟,也没有对营养素限制进行建模。氮和磷是限制植物生产力的关键因素。在这里,我们使用由HadSM3 GCM在工业前平衡加倍下产生的相对较大的扰动物理集合(PPE)模拟,研究了大型(全局)尺度NPP对气候和大气中二氧化碳浓度[CO_2]的敏感性和不确定性大气[CO_2]。我们还利用整体设计强调了两个通常对立的对NPP强迫的相对重要性:(i)植物对CO_2的生理反应,称为“ Phys”; (ii)植物对称为“ Rad”的物理气候驱动因素的反应。重要的是要注意,这是一项敏感性研究,可为Rad和Phys驱动程序的相对重要性及其不确定性提供有用的指导。结果不能被认为是定量的,特别是因为平衡的实验设计和模型中缺乏营养限制是阻止此类解释的重要限制。我们发现,[CO_2]的增加和相关的气候变化最终使潜在的全球平均NPP增加了57%,从0.293 kgcm〜(-2)yr〜(-1)(-36 PgCyr〜(-1))增加到0.460 kg cm〜 (-2)yr〜(-1)(〜57 PgCyr〜(-1))。在空间上,最大的减少量(-0.45 kg cm〜(-2)yr〜(-1))发生在南美东北部,与降水量减少最大有关。在非洲的NPP已经很高的热带非洲和印度尼西亚,最大的增幅(高达-0.75 kg cm〜(-2)yr〜(-1))发生在[CO_2]翻倍的情况下,温度和降水都增加了。在大多数NPP显示增加的区域中,变化显着大于整体标准偏差,这表明在[CO_2]翻倍的情况下,全球NPP的增加是相当稳健的。但是,在某些地区,尤其是预测NPP下降的南美洲东北部和中美洲东北部地区,整个集合的标准差大于平均NPP变化,这表明即使NPP对[CO_2]和气候不确定。这些不确定性高度依赖于NPP对Phys和Rad强迫的相对敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号