首页> 外文期刊>Agricultural and Forest Meteorology >Interpreting post-drought rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean oak savannah
【24h】

Interpreting post-drought rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean oak savannah

机译:解释干旱后再湿对地中海橡树大草原中土壤和生态系统碳动态的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A transient increase in soil carbon dioxide efflux after rewetting of previously dry soils, termed the Birch effect, can significantly influence the ecosystem carbon balance. This has generally been related to increased soil microbial respiration in response to a temporal increase in labile soil carbon. In order to quantify ecosystem carbon losses by the Birch effect and to trace the underlying biogeochemical processes, we monitored the effects of first natural rain pulses on soil and ecosystem carbon dioxide fluxes and their isotopic composition (delta C-13) after an extended summer drought in a Mediterranean oak woodland. While GPP was affected negatively, rain largely enhanced soil respiratory processes, which increased their relative contribution to NEE by up to 95%, resulting in a significant net carbon loss from the ecosystem. This was reflected by high correlation (r 0.91) between the two fluxes. Further, isotopic composition of soil respiration (delta C-13(S)) explained on average 71% of the isotopic composition of ecosystem respiration (delta C-13(R)). We found a strong relationship between soil moisture and the increase in soil respiration (R-S) and NEE, indicating that the Birch effect observed during this study did not result from a transient increase in labile soil carbon but from a gradual (several days) moisture response of size and/or activity of the soil microbial community. We also observed large variation in delta C-13 of soil and ecosystem respired CO2 that corresponded to the rain pulses with enrichment of up to 8 and 6%., respectively, and a subsequent depletion to initial values during the following dry days, which might be explained by increased relative contribution of soil microbial communities from deeper soil layers to overall soil respiration, a switch in the respired carbon source (e.g. anaplerotic carbon) and changes in apparent fractionation during the mineralization of soil organic matter after the depletion of labile carbon pools. (C) 2011 Elsevier B.V. All rights reserved.
机译:在将先前干燥的土壤重新润湿后,土壤二氧化碳外流的短暂增加(称为桦木效应)会显着影响生态系统的碳平衡。这通常与响应不稳定土壤碳的暂时增加而增加的土壤微生物呼吸有关。为了通过桦木效应来量化生态系统的碳损失并追踪潜在的生物地球化学过程,我们监测了夏季干旱延长后第一次自然降雨对土壤和生态系统二氧化碳通量及其同位素组成(δC-13)的影响。在地中海橡树林中。虽然GPP受到负面影响,但雨水在很大程度上增强了土壤呼吸过程,使它们对NEE的相对贡献增加了多达95%,从而导致生态系统大量净碳损失。两种通量之间的高度相关性(r 0.91)反映了这一点。此外,土壤呼吸的同位素组成(δC-13(S))解释了生态系统呼吸的同位素组成(δC-13(R))的平均71%。我们发现土壤水分与土壤呼吸(RS)和NEE的增加之间存在很强的关系,这表明在此研究中观察到的桦木效应不是不稳定的土壤碳瞬时增加引起的,而是逐渐(几天)的水分响应引起的土壤微生物群落的大小和/或活性。我们还观察到土壤和生态系统呼吸的CO2的δC-13差异很大,分别对应于降雨脉冲,其富集度分别高达8%和6%,随后在随后的干燥天中耗尽至初始值,这可能可以解释为土壤微生物群落从更深的土壤层到整体土壤呼吸的相对贡献增加,呼吸碳源(例如无补碳)的转换以及不稳定碳库枯竭后土壤有机质矿化过程中表观组分的变化。 (C)2011 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号