首页> 外文期刊>Rubber Chemistry and Technology >LOOKING AT THE GLASS TRANSITION: CHALLENGES OF EXTREME TIME SCALES AND OTHER INTERESTING PROBLEMS
【24h】

LOOKING AT THE GLASS TRANSITION: CHALLENGES OF EXTREME TIME SCALES AND OTHER INTERESTING PROBLEMS

机译:看着玻璃过渡:极端时间尺度和其他有趣问题的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

The behavior of glass-forming materials is examined with emphasis on the below-glass transition behavior. A major question that is related to the super-Arrhenius behavior of the dynamics of glass-forming systems is whether the apparent divergence at finite temperature continues below the kinetic or laboratory glass transition that is related to the limits of measurement and is standardized so that the material relaxation time is near 100 s. The problem arises because as the temperature decreases, the time scales required to reach equilibrium (or metastable equilibrium) become geologically long. Yet the apparent finite temperature divergence is fundamental to many theories of glasses; therefore, it becomes essential to find ways to finesse the extreme time scales related to the so-called Kauzmann paradox to bring new information to the ongoing conversation concerning the existence or not of an ideal glass transition at either the Kauzmann temperature or the Vogel-Fulcher-Tammann temperature. After describing the framework of the glassy state that is formed by the early ideas of a fictive temperature, we examine the use of extremely low fictive temperature glasses as a means to potentially get around the long time-scale problem. The challenge is to find ways to create such glasses and measure their properties. In addition to looking at the dynamic behavior of a 20-million-year-old amber and a vapor-deposited amorphous perfluoropolymer whose fictive temperature was the same as the Kauzmann temperature for the material, we also examine the possibility of directly testing the thermodynamics of an ideal glass transition by making athermal solutions of a poly(alpha-methyl styrene) and its pentamer, where we find that the entropy surface determined from extrapolation of the heat capacity to zero pentamer shows no distinct transition at as much as 180 K below the Kauzmann temperature. The significance of the dynamics of the stable glasses and the thermodynamics of the polymer solutions is discussed in terms that challenge the idea of an ideal glass transition. Wealso look in more detail at the ability to use vapor deposition to make ethylbenzene, a small-molecule organic, into an ultra-stable glass with a fictive temperature that is possibly below the Kauzmann temperature of this material. Weend with remarks on the question of decoupling of different relaxation mechanisms as something not treated by current theories of glass, and we consider some open questions related to the fact that the glass transition remains an unresolved and important problem.
机译:检查玻璃形成材料的行为,重点是低于玻璃过渡行为。与玻璃形成系统的动态的超级Arhenius行为有关的一个主要问题是有限温度的表观分歧是否在动力学或实验室玻璃化转变下继续,其与测量极限有关并且标准化物质松弛时间接近100秒。出现问题所以由于随着温度降低,达到平衡(或亚稳态平衡)所需的时间尺度变得在地质上。然而,对于许多眼镜理论,表观有限温度分歧是基础;因此,找到一种实现与所谓的考茨曼悖论相关的极端时间尺度的方法是必要的,以将新信息带入有关Kauzmann温度或Vogel-Futcher的理想玻璃过渡的正在进行的谈话-tammann温度。在描述由虚拟温度的早期思想形成的玻璃状状态的框架之后,我们检查了极低的虚拟温度眼镜作为潜在地围绕长时间问题的手段。挑战是寻找创建此类眼镜并衡量其性质的方法。除了看一百万岁的琥珀色和蒸汽沉积的无定形全氟聚合物的动态行为外,我们还考虑了直接测试热力学的可能性通过制造聚(α-甲基苯乙烯)及其五聚体的静脉溶液来改变理想的玻璃化转变,在那里我们发现从热容量的外推确定为零五聚体的熵表面显示出在低于180k的情况下没有明显的过渡Kauzmann温度。稳定玻璃和聚合物溶液热力学的动力学的重要性讨论了挑战理想玻璃过渡的想法。在使用气相沉积以使乙苯的能力,小分子有机物中,佩埃索更详细地看待乙苯,进入超稳定的玻璃,具有可能低于该材料的Kauzmann温度的虚拟温度。审批关于不同放松机制的解耦问题,因为目前玻璃的理论不治疗的东西,我们考虑了一些与玻璃转型仍然是未解决的问题和重要问题的开放问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号