首页> 外文期刊>RNA >'End-to-end' stacking of small dsRNA
【24h】

'End-to-end' stacking of small dsRNA

机译:“端到端”堆叠小DSRNA

获取原文
获取原文并翻译 | 示例
           

摘要

PELDOR (pulsed electron-electron double resonance) is an established method to study intramolecular distances and can give evidence for conformational changes and flexibilities. However, it can also be used to study intermolecular interactions as for example oligerimization. Here, we used PELDOR to study the "end-to-end" stacking of small double-stranded (ds) RNAs. For this study, the dsRNA molecules were only singly labeled with the spin label TPA to avoid multispin effects and to measure only the intermolecular stacking interactions. It can be shown that small dsRNAs tend to assemble to rodlike structures due to pi-pi interactions between the base pairs at the end of the strands. On the one hand, these interactions can influence or complicate measurements aimed at the determining of the structure and dynamics of the dsRNA molecule itself. On the other hand, it can be interesting to study such intermolecular stacking interactions in more detail, as for example their dependence on ion concentration. We quantitatively determined the stacking probability as a function of the monovalent NaCl salt and the dsRNA concentration. From these data, the dissociation constant K-d was deduced and found to depend on the ratio between the NaCl salt and dsRNA concentrations. Additionally, the distances and distance distributions obtained predict a model for the stacking geometry of dsRNAs. Introducing a nucleotide overhangs at one end of the dsRNA molecule restricts the stacking to the other end, leading only to dimer formations. Introducing such an overhang at both ends of the dsRNA molecule fully suppresses stacking, as we demonstrate by PELDOR experiments quantitatively.
机译:Plyor(脉冲电子 - 电子双共振)是一种研究分子内距离的建立方法,可以提供构象变化和灵活性的证据。然而,它也可用于研究分子间相互作用,例如奥格里亚维化。在这里,我们使用Plyor研究小双链(DS)RNA的“端到端”堆叠。对于该研究,DSRNA分子仅用旋转标签TPA单独标记,以避免多重效应并仅测量分子间堆叠相互作用。可以表明,由于股线末端的碱基对之间的PI-PI相互作用,小DSRNA倾向于组装到棒状结构。一方面,这些相互作用可以影响或复杂化旨在确定DSRNA分子本身的结构和动力学的测量。另一方面,更详细地研究这种分子间堆叠相互作用可能是有趣的,例如它们对离子浓度的依赖性。我们定量地确定了作为单价NaCl盐和DSRNA浓度的函数的堆叠概率。从这些数据中,推导出解离常数K-D并发现取决于NaCl盐和DsRNA浓度之间的比例。另外,获得的距离和距离分布预测DSRNA的堆叠几何形状的模型。在DSRNA分子的一端引入核苷酸突出物将堆叠限制为另一端,仅导致二聚体形成。在DSRNA分子的两端引入这种悬垂完全抑制堆叠,正如我们通过PLYOR实验的定量表现出来。

著录项

  • 来源
    《RNA》 |2019年第2期|共8页
  • 作者单位

    Goethe Univ Ctr Biomol Magnet Resonance Inst Phys &

    Theoret Chem D-60438 Frankfurt Germany;

    Goethe Univ Inst Organ Chem &

    Chem Biol D-60438 Frankfurt Germany;

    Goethe Univ Ctr Biomol Magnet Resonance Inst Phys &

    Theoret Chem D-60438 Frankfurt Germany;

    Goethe Univ Inst Organ Chem &

    Chem Biol D-60438 Frankfurt Germany;

    Goethe Univ Ctr Biomol Magnet Resonance Inst Phys &

    Theoret Chem D-60438 Frankfurt Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

    EPR; PELDOR/DEER; dsRNA; stacking;

    机译:epr;peldor / deer;dsrna;堆叠;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号