首页> 外文期刊>Rock Mechanics and Rock Engineering >Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model
【24h】

Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

机译:鹰福特商品耦合地质力学与流体流动模型的液压压裂与生产优化

获取原文
获取原文并翻译 | 示例
           

摘要

With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.
机译:随着物流气体和紧密储物液的增加,水平钻井和多级水力压裂过程已成为非传统现场开发工作中的常规程序。自然骨折在液压骨折生长中发挥着关键作用,随后影响刺激的储层体积和生产效率。此外,现有的裂缝也可以在操作期间有助于压力依赖性液体泄漏。因此,需要将覆盖液压压裂设计前的离散裂缝网络的可靠识别,以便纳入液压压裂和储层模拟,以实现原位储层条件的现实代表性。在该研究中,使用了一种模拟流体流动的新方法开发了一种集成的3-D裂缝和流体流动模型,并在自然骨折和液压刺激的紧的储层中提供可靠的生产预测。该模型是用三个关键模块创建的。复杂的3-D离散断裂网络模型引入了具有相关裂缝储层特性的现实自然断裂几何形状。利用离散断裂网络进行液压压裂模型,用于模拟复杂离散裂缝网络中的液压断裂和流动。最后,使用具有生产网格系统的储层模型,允许用户有效地在具有复杂的裂缝网络中的紧密地层中的流体流模拟。复杂的离散自然裂缝模型,液压压裂的集成离散断裂模型,流体流动模型和输入数据集已经针对微震断裂映射和从井垫中获得的制作数据,其中包括三个水平生产井。鹰福特油窗口在南德克萨斯州。还评估了另外两种压裂几何形状以优化累积生产和三个井的单独。无论实施的压裂技术如何,早期生产时间都预期了早期生产时间的生产率显着降低。使用交替压裂技术进行的模拟导致更多的石油生产,而拉脂压裂用于20年的生产期。然而,由于经验丰富,累积生产的差异变小,交替压裂实际上不可实现,而拉链压裂技术的现场应用更实用和广泛使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号