首页> 外文期刊>Rock Mechanics and Rock Engineering >XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations
【24h】

XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations

机译:基于XFEM的CZM,用于仿真仿真组织仿真液压压裂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The cohesive zone model (CZM) honors the softening effects and plastic zone at the fracture tip in a quasi-brittle rock, e.g., shale, which results in a more precise fracture geometry and pumping pressure compared to those from linear elastic fracture mechanics. Nevertheless, this model, namely the planar CZM, assumes a predefined surface on which the fractures propagate and therefore restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired by integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement model based on extended finite element method (XFEM). This integrated model, called XFEM-based CZM, simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled a single stage of 3D hydraulic fracturing initiating from three perforation clusters in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poroelasticity for fracture and matrix spaces, respectively, in Abaqus. We restricted the XFEM enrichment zones to the stimulation regions as enriching the whole domain leads to extremely high computational expenses and unrealistic fracture growths around sharp edges. Moreover, we validated our numerical technique by comparing the solution for a single fracture with KGD solution and demonstrated several precautionary measures in using XFEM in Abaqus for faster solution convergence, for instance the initial fracture length and mesh refinement. We demonstrated the significance of the injection rate and stress contrast in fracture aperture, injection pressure, and the propagation direction. Moreover, we showed the effect of the stress distribution on fracture propagation direction comparing the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM. We found that the stress shadowing effect of hydraulic fractures on each other can cause these fractures to coalesce, grow parallel, or diverge depending on cluster spacing. We investigated the effect of this arbitrary propagation direction on not only the fractures' length, aperture, and the required injection pressure, but also the fractures' connection to the wellbore. This connection can be disrupted due to the near-wellbore fracture closure which may embed proppant grains on the fracture wall or screen out the fracture at early times. Our results verified that the near-wellbore fracture closure strongly depends on the following: (1) the implemented model, planar or XFEM-based CZM; and (2) fracture cluster spacing. Ultimately, we proposed the best fracturing scenario and cluster spacing to maintain the fractures connected to the wellbore.
机译:粘性区域模型(CZM)在准脆性岩石中骨折尖端的软化效果和塑料区致华,例如页岩,与线性弹性骨折力学相比,导致更精确的断裂几何形状和泵送压力。然而,该模型即平面CZM,假设裂缝传播的预定表面,因此限制了裂缝传播方向。值得注意的是,该方向取决于紧密间隔裂缝之间的应力相互作用,并且可以通过基于延长的有限元方法(XFEM)与完全耦合的孔隙压力位移模型相结合CZM作为节段接触相互作用模型来获取。这种被称为XFEM的CZM的集成模型模拟了沿任意的解决方案相关路径的断裂启动和传播。在这项工作中,我们使用平面CZM和XFEM的CZM在单层,准脆性页岩形成中建模了从三个穿孔簇的三个穿孔簇,分别包括裂隙流动和围绕骨折和矩阵空间的裂隙流动和腹弹性,在阿布松。我们将XFEM富集区限制为刺激区域,因为富集整个领域导致极高的计算费用和锋利的边缘周围的不切实际的骨折生长。此外,我们通过将单一骨折与KGD解决方案的溶液进行比较来验证了我们的数值技术,并在ABAQUS中使用XFEM进行了几项预防措施,以更快的溶液收敛,例如初始断裂长度和网眼细化。我们证明了注射率和应力对比在骨折孔径,注射压力和传播方向上的重要性。此外,我们展示了应力分布对骨折传播方向的影响将三簇压裂结果与来自Xfem的CZM的平面CZM的三簇压裂结果进行比较。我们发现,根据簇间距,液压骨折彼此彼此彼此的应力遮蔽效果会导致聚结,同时平行或偏离。我们研究了这种任意传播方向对骨折的长度,光圈和所需的注射压力的影响,也调查了与井筒的裂缝的连接。由于近井筒断裂闭合,这种连接可能被破坏,这可能会在裂缝壁上嵌入支撑剂颗粒或在早期筛分骨折。我们的结果证实,近井筒骨折闭合强烈取决于以下内容:(1)所实施的模型,平面或XFEM的CZM; (2)骨折簇间距。最终,我们提出了最佳的压裂场景和簇间距,以维持连接到井筒的骨折。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号