Abstract Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data
【24h】

Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data

机译:高光谱辐射转移模型,探讨Flex的生物物理参数和冠层荧光的组合检索 - Sentinel-3串联任务多传感器数据

获取原文
获取原文并翻译 | 示例
       

摘要

AbstractTheFLuorescence EXplorer(FLEX) satellite mission, selected as ESA's 8th Earth Explorer, has been designed for the measurement of sun-induced fluorescence (F) spectra emitted by plants. This will be accomplished through a multi-sensor approach by placing it in a common orbit in tandem with the Sentinel-3 (S3) mission, which will have two optical sensors on board, OLCI (Ocean and Land Colour Instrument) and SLSTR (Sea and Land Surface Temperature Radiometer) to complement FLEX. These S3 instruments will be used in combination with the imaging spectrometers on board FLEX to provide data useful for atmospheric correction of FLEX data. However, a fully synergetic approach, i.e. by exploiting the spectral and directional information from all tandem mission instruments together, is an attractive alternative which is explored in this paper. By employing all combined top-of-atmosphere (TOA) spectral radiance data, one can (i) characterize the relevant optical properties of the atmosphere, (ii) retrieve biophysical canopy properties including the associated reflectance anisotropy, and (iii) retrieve a more accurate and consistent canopyF.Regarding retrieval methods, Fraunhofer Line Depth (FLD) and Spectral Fitting (SF) are well-known techniques applied to hyperspectral data. Both methods depend on a high spectral resolution and assume a Lambertian (isotropic) canopy reflectance. However, most vegetation canopies are non-Lambertian. This implies that, in particular when ignoring the anisotropic surface reflection, substantial retrieval errors can occur due to the interac
机译:<![cdata [ Abstract 荧光浏览器(flex)卫星使命,被设计为ESA的第8 Eart Explorer,已经设计用于测量植物发出的太阳诱导的荧光( f )光谱。这将通过多传感器方法来实现,通过将其与Sentinel-3(S3)任务的常见轨道放置在串联中,将在船上,OLCI(海洋和陆地仪器)和SLST(海域)中有两个光学传感器。和陆地表面温度辐射计以补充弯曲。这些S3仪器将与弯曲板上的成像光谱仪结合使用,以提供可用于柔性数据的大气校正的数据。然而,一种完全协同的方法,即,通过利用所有串联使命仪器的光谱和定向信息在一起,是本文探讨的有吸引力的替代方案。通过采用所有组合的大气层(TOA)光谱辐射率数据,一个可以(i)表征大气的相关光学性质,(ii)检索包括相关反射率各向异性的生物物理冠层特性,(iii)检索更多准确且一致的冠层 f 关于检索方法,fraunhofer线深度( FLD)和光谱配件(SF)是应用于高光谱数据的众所周知的技术。两种方法都依赖于高光谱分辨率并假设兰伯特(各向同性)冠层反射率。然而,大多数植被檐篷都是非兰博的。这意味着,特别是当忽略各向异性表面反射时,由于帧间间隔可能发生实质的检索错误

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号