...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Detection of land surface freeze-thaw status on the Tibetan Plateau using passive microwave and thermal infrared remote sensing data
【24h】

Detection of land surface freeze-thaw status on the Tibetan Plateau using passive microwave and thermal infrared remote sensing data

机译:采用无源微波和热红外遥感数据检测藏高原上的土地冻融状态

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The freeze/thaw (F/T) cycle plays an important role in climate change and ecology research. Currently, soil F/T monitoring is restricted by low satellite spatial resolution or a relative long revisit cycle, which is one of the main problems in improving F/T monitoring resolution using available satellite data. Because temperature is a key parameter in determining soil F/T status, in this study, relatively high-resolution merged land surface temperature data were obtained using the Bayesian Maximum Entropy (BME) method by blending LSTs retrieved from passive microwave and infrared remotely sensed data. The merged temperature data were then used to downscale the passive microwave brightness temperature from 0.25° to 0.05°. Finally, the merged temperature and downscaled brightness temperature data were applied to discriminate the surface freeze/thaw status. A comparison with in situ data turned out that the downscaled brightness temperature could be used to determine soil F/T status with a total classification accuracy higher than 80%. The total freeze/thaw classification accuracy using merged temperature data was only 59.7%, which can be attributed to the temperature difference between the land surface and soil. After the adjustment with a relationship between soil temperature and land surface temperature, the classification accuracy reached 89.7%. Highlights ? The feasibility of MODIS data to monitor land surface F/T status is investigated. ? A merged LST data was generated through combination of MODIS and AMSR-E by BME. ? A merged LST data was useful to obtain high resolution F/T status after correction. ? The brightness temperature was downscaled into a finer spatial resolution. ]]>
机译:<![cdata [ 抽象 冻结/解冻(F / T)周期在气候变化和生态研究中发挥着重要作用。目前,土壤F / T监测受到低卫星空间分辨率或相对长的重访周期的限制,这是使用可用卫星数据改善F / T监控分辨率的主要问题之一。由于温度是确定土壤F / T状态的关键参数,因此在本研究中,通过将来自被动微波和红外传感的数据检索的LSTS混合来获得相对高分辨率的合并陆地表面温度数据。 。然后使用合并的温度数据将被动微波亮度温度从0.25°缩小到0.05°。最后,应用合并的温度和较低的亮度温度数据来区分表面冻结/解冻状态。与原位的比较数据证明,较低的亮度温度可用于确定土壤f / t状态,总分类精度高于80%。使用合并温度数据的总冻融/解冻分类精度仅为59.7%,可归因于土地表面和土壤之间的温差。在调整土壤温度和陆地温度之间的关系后,分类精度达到89.7%。 突出显示 调查了Modis数据以监视土地表面F / T状态的可行性。 通过MODIS和AMSR-E的组合生成合并的LST数据BME。 合并的LST数据是在校正后获得高分辨率f / t状态有用。 亮度温度将较好的空间分辨率缩小为更精细的空间分辨率。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号