...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Coupling SNOWPACK-modeled grain size parameters with the HUT snow emission model
【24h】

Coupling SNOWPACK-modeled grain size parameters with the HUT snow emission model

机译:耦合积雪建模的粒度参数与小屋雪发射模型

获取原文
获取原文并翻译 | 示例

摘要

We studied whether the physical snow evolution model SNOWPACK could be used together with the HUT snow emission model to simulate microwave brightness temperatures (TB) of snow cover and to parameterize key a priori variables in the retrieval of snow water equivalent (SWE). We used the extensive in situ measurement data set collected in Sodankyla, Finland, during the Nordic Snow Radar Experiment (NoSREx) campaign in 2009-2013 to model the evolution of snow with SNOWPACK. Resulting snow profiles were validated with manual in situ measurements. Mean agreement scores (for a winter) were 0.85-0.91 for traditional grain size, 0.74-0.75 for optical grain size, 0.65-0.80 for density, and 0.71-0.83 for temperature. Grain sizes modeled with SNOW-PACK were compared to effective grain size retrieved from tower-based microwave radiometer measurements. The bias and RMS error of SNOWPACK optical grain size were -0.03 mm and 0.20 mm, respectively, and those of SNOWPACK traditional grain size were 0.30 mm and 0.33 mm, respectively. SNOWPACK snow profiles were used as input to the HUT snow emission model for calculation of TB, which was compared to microwave radiometer measurements. TB calculated with SNOWPACK optical grain size exhibited lower biases (from -12.5 k to 16.2 K, depending on year and frequency) and RMS errors (from 33 K to 18.5 K) than TB calculated with SNOW-PACK traditional grain size (bias from -42.2 K to -9.9 K, RMS error from 12.0 K to 44.7 K). Grain sizes, temperature, and density modeled with SNOWPACK were used as a priori snow data in the retrieval of SWE from tower based microwave radiometer observations. The lowest overall bias and RMS error were reached when traditional grain size from SNOW-PACK was used, either directly with modelled snow density and temperature ( 33 mm and 58 mm, respectively) or with an effective grain size correction and static snow density and temperature applied (22 mm and 59 mm, respectively). (C) 2016 Published by Elsevier Inc.
机译:我们研究了物理雪进化模型是否可以与小屋雪发射模型一起使用,以模拟雪覆盖的微波亮度温度(TB),并参数化在雪水等同(SWE)检索中的优先变量。我们在2009 - 2013年在北欧雪雷达实验(NoSrex)竞选期间,在芬兰Sodankyla收集的广泛的原位测量数据集进行了模型,以模拟雪与积雪的演变。通过手动验证了雪型材以原位测量验证。用于传统粒度的平均协议评分(冬季)为0.85-0.91,对于光学粒度为0.74-0.75,密度为0.65-0.80,温度为0.71-0.83。将用雪包建模的谷物尺寸与从塔式的微波辐射计测量测量检出的有效粒度。 Snowpack光学粒度的偏差和rms误差分别为-0.03mm和0.20 mm,分别为0.30毫米和0.33mm。 Snowpack雪型材被用作CHUT降雪模型的输入,用于计算TB,与微波辐射计测量相比。用积雪光学晶粒尺寸计算的TB表现出较低的偏差(从-12.5 k到16.2 k,取决于年和频率)和rms误差(从33 k到18.5 k),而不是用雪包传统粒度计算的Tb(来自 - 42.2 k至-9.9 k,rms误差为12.0 k至44.7 k)。用Snowpack建模的晶粒尺寸,温度和密度被用作从基于塔的微波辐射计观测的SWE检索中的先验雪数据。当使用来自雪盒的传统粒度和分别使用模型的雪密度和温度(分别为33毫米和58毫米)或具有有效的晶粒尺寸校正和静雪密度和温度时,达到最低总体偏差和RMS错误施加(分别为22毫米和59毫米)。 (c)2016年由elsevier公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号