...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Using SMOS soil moisture data combining CO2 flask samples to constrain carbon fluxes during 2010-2015 within a Carbon Cycle Data Assimilation System (CCDAS)
【24h】

Using SMOS soil moisture data combining CO2 flask samples to constrain carbon fluxes during 2010-2015 within a Carbon Cycle Data Assimilation System (CCDAS)

机译:使用SMOS土壤湿度数据组合CO2烧瓶样品在碳循环数据同化系统(CCDA)中的2010-2015期间约束碳通量

获取原文
获取原文并翻译 | 示例

摘要

The terrestrial carbon cycle is an important component of the global carbon budget due to its large gross exchange fluxes with the atmosphere and their sensitivity to climate change. Terrestrial biosphere models show large uncertainties in simulating carbon fluxes, which impact global carbon budget assessments. The land surface carbon cycle is tightly controlled by soil moisture through plant physiological processes. Accurate soil moisture observations thereby have the potential to improve the modeling of carbon fluxes in a model-data fusion framework. We employ the Carbon Cycle Data Assimilation System (CCDAS) to assimilate six years of surface soil moisture provided by the SMOS satellite in combination with global-scale observations of atmospheric CO2 concentrations. We find that assimilation of SMOS soil moisture exhibits better performance on soil hydrology modeling at both global and site-level than only assimilating atmospheric CO2 concentrations, and it improves the soil moisture simulation particularly in mid- to high-latitude regions where the plants suffer from water stress frequently. The optimized model also shows good agreements with inter-annual variability in simulated Net Primary Productivity (NEP) and Gross Primary Productivity (GPP) from an atmospheric inversion (Jena CarboScope) and the up-scaled eddy covariance flux product (FLUXNET-MTE), respectively. Correlation between SIF (Solar Induced Fluorescence) and optimized GPP also shows to be the highest when soil moisture and atmospheric CO2 are simultaneously assimilated. In general, CCDAS obtains smaller annual mean NEP values (1.8 PgC/yr) than the atmospheric inversion and an ensemble of Dynamic Global Vegetation Models (DGVMs), but larger GPP values (167.8 PgC/yr) than the up-scaled eddy covariance dataset (FLUXNET-MTE) and the MODIS based GPP product for the years 2010 to 2015. This study demonstrates the high potential of constraining simulations of the terrestrial biosphere carbon cycle on inter-annual time scales using long-term microwave observations of soil moisture.
机译:陆地碳循环是全球碳预算的重要组成部分,由于其具有大气的大型交换通量及其对气候变化的敏感性。陆地生物圈模型在模拟碳通量的情况下表现出大量的不确定性,影响全球碳预算评估。通过植物生理过程通过土壤水分紧密控制土地表面碳循环。因此,准确的土壤湿度观测有可能改善模型数据融合框架中的碳通量的建模。我们采用碳循环数据同化系统(CCDA)来同化SMOS卫星提供的六年的表面土壤水分,与大气二氧化碳浓度的全球规模观察组合。我们发现,SMOS土壤水分的同化在全球和部位水平上对土壤水分模型的性能更好地表现出比仅吸收大气二氧化碳浓度的土壤水分模型,并且它特别提高了植物患有的中至高纬度地区的土壤水分模拟水分压力经常。优化的模型还与模拟净初级生产率(NEP)的年间变异性以及来自大气反转(Jena Carboscope)的总初级生产率(GPP)和上缩放的涡流协方差通量产品(Fluxnet-MTE)的初级生产力(GPP)以及良好的协议。分别。 SIF(太阳诱导荧光)和优化的GPP之间的相关性也显示出土壤水分和大气CO2同时同化的最高。通常,CCDA获得比大气反转和动态全球植被模型(DGVM)的大气反转和集合获得更小的年度平均NEP值(1.8 PGC / YR),但比上缩放的涡流协方差数据集更大的GPP值(167.8 PGC / YR) (FLUXNET-MTE)和2010年至2015年的基于MODIS基于GPP产品的GPP产品。本研究表明,使用土壤水分的长期微波观察,陆地生物圈碳循环的约束模拟的高潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号