...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping
【24h】

DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping

机译:DeepCropMapping:一种多时间深度学习方法,具有改善动态玉米和大豆映射的空间相互性

获取原文
获取原文并翻译 | 示例

摘要

Accurate crop mapping provides important and timely information for decision support on the estimation of crop production at large scale. Most existing crop-specific cover products based on remote sensing data and machine learning algorithms cannot serve large agriculture production areas as a result of poor model transfer capabilities. Developing a generalizable crop classification model for spatial transfer across regions is greatly needed. A deep learning approach, named DeepCropMapping (DCM), has been developed based on long short-term memory structure with attention mechanisms through integrating multi-temporal and multi-spectral remote sensing data for large-scale dynamic corn and soybean mapping. Full cross validation of classification experiments were conducted in six sites each covering 2,890,000 pixels at 30 m resolution in the U.S. corn belt from Year 2015 to 2018. Landsat Analysis Ready Data (ARD) and Cropland Data Layer (CDL) were adopted as the input satellite observations and ground reference, respectively. Transformer, Random Forest (RF), and Multilayer Perceptron (MLP) models were built for comparison. The DCM model produced a mean kappa score of 85.8% in base sites and a mean average kappa score of 82.0% in transfer sites at the end of the growing season. It yielded a comparable performance to Transformer and better than RF and MLP at the local test. The DCM model significantly outperformed other three models with a 95% confidence interval in the spatial transfer analysis. The results demonstrated the capability of learning generalizable features by the DCM model from ARD time series. The computational complexity analysis suggested that the DCM model required a shorter training time than Transformer but longer than MLP and RF. The results of the in-season classification experiment indicated the DCM model captured critical information from key growth phases and achieved higher accuracy than other models after the beginning of July. By monitoring the classification confidence in each time step, the results showed that the increased length of seasonal remote sensing time series would reduce the classification uncertainty in all sites. This study provided a viable option toward large-scale dynamic crop mapping through the integration of deep learning and remote sensing time series.
机译:准确的裁剪映射为决策支持提供了大规模估计作物生产的重要信息。基于遥感数据和机器学习算法的大多数现有的特定作物特定封面产品由于模型转移能力差而不能为大型农业生产领域提供。大大需要开发跨区域的空间转移的可推广作物分类模型。通过集成大规模动态玉米和大豆映射的多时间和多光谱遥感数据,基于长短短期内存结构,开发了一种名为DeepCropmapping(DCM)的深度学习方法。分类实验的全交交叉验证在六个地点进行,每个占据2015年至2018年的美国玉米带30米分辨率的2,890,000像素。Landsat分析准备数据(ARD)和农作物数据层(CDL)被用作输入卫星分别观察和地面参考。建立了变压器,随机森林(RF)和多层的Perceptron(MLP)模型进行了比较。 DCM模型在生长季节结束时产生了85.8%的平均Kappa得分为85.8%,平均kappa得分为82.0%。它对变压器和局部测试的MLP产生了相当的性能。 DCM模型在空间转移分析中具有95%置信区间的其他三种型号显着优于其他三种型号。结果表明,DCM模型从ARD时间序列的学习概括特征的能力。计算复杂性分析表明,DCM模型需要比变压器更短的训练时间,而是比MLP和RF长。季节性分类实验的结果表明,DCM模型捕获了关键增长阶段的关键信息,并在7月初之后的其他模型取得更高的准确性。通过监测每次步骤中的分类信心,结果表明,季节性遥感时间序列的增加程度将减少所有网站中的分类不确定性。本研究提供了通过深入学习和遥感时间序列的集成来实现大规模动态作物映射的可行选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号