首页> 外文期刊>Reaction Chemistry & Engineering >Visualization of two-phase reacting flow behavior in a gas-liquid-solid microreactor
【24h】

Visualization of two-phase reacting flow behavior in a gas-liquid-solid microreactor

机译:在气液固体微反应器中的两相反应流动的可视化

获取原文
获取原文并翻译 | 示例
           

摘要

The hydrodynamic characteristics of gas-liquid two-phase flow can significantly affect the performance of gas-liquid-solid microreactors. Using nitrobenzene hydrogenation as the reference heterogeneous catalytic reaction, the two-phase reacting flow behavior was visualized and characterized. Distinct differences in the length evolution, migration velocity and residence time of gas slugs were noticed for the reaction and non-reaction cases. The interface retraction of a gas slug was observed, which was mainly due to the hy- drogen consumption at the gas pressure accumulation stage. Moreover, effects of the gas and liquid flow rates as well as the inlet nitrobenzene concentration on the two-phase flow behaviors and microreactor performance were also investigated. The results suggested that increasing the gas flow rate could enhance nitrobenzene conversion, but this effect was inhibited by the reduced residence time at high gas flow rates. Higher nitrobenzene concentration could enhance the interface retraction and extend the residence time, and together promote aniline production but in a trade-off with the conversion. This work reveals the in- trinsic interaction between two-phase flow behaviors and catalytic reaction in microreactors, which can play a significant role in the development of microreactor technology.
机译:气液两相流的流体动力学特性可显着影响气体液体固体微反应器的性能。使用硝基苯氢化作为参考非均相催化反应,可视化和表征两相反应流动行为。对于反应和非反应案例,注意到气体块的长度演化,迁移速度和停留时间的明显差异。观察到气体块的界面缩回,这主要是由于气体压力累积阶段的Hy-凋亡。此外,还研究了气体和液体流速的影响以及对两相流动性和微反应器性能的入口硝基苯浓度。结果表明,增加气体流速可以提高硝基苯转化,但在高气流速率下降低的停留时间抑制了这种效果。硝基苯浓度较高可以增强界面缩回并延长停留时间,并在一起促进苯胺生产,而是通过转换进行权衡。这项工作揭示了微反应器中两相流量行为和催化反应之间的三种相互作用,这在微反应器技术的发展中可以发挥重要作用。

著录项

  • 来源
    《Reaction Chemistry & Engineering》 |2019年第4期|共9页
  • 作者

    Hao Feng; Xun Zhu; Biao Zhang;

  • 作者单位

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) Ministry of Education Chongqing 400030 China.;

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) Ministry of Education Chongqing 400030 China.;

    Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) Ministry of Education Chongqing 400030 China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号