...
首页> 外文期刊>Aerosol Science and Technology: The Journal of the American Association for Aerosol Research >Design and Performance Test of a Lab-Made Single-Stage Low-Pressure Impactor for Morphology Analysis of Diesel Exhaust Particles
【24h】

Design and Performance Test of a Lab-Made Single-Stage Low-Pressure Impactor for Morphology Analysis of Diesel Exhaust Particles

机译:实验室制造的单级低压冲击器用于柴油机排气颗粒形态分析的设计和性能测试

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A serial method is described for estimating the particle effective density and dynamic shape factor of particles, i.e., diesel exhaust particles (DEPs). For this purpose, we designed a single stage low-pressure impactor with a cutoff diameter of 130 nm. The collection efficiency curve of the impactor was obtained using mobility-classified sodium chloride (NaCl) particles as a function of the mobility diameter. Then by converting the mobility diameter of the NaCl particle into the aerodynamic equivalent diameter, the efficiency curve can be expressed as a function of the aerodynamic diameter. We also obtained the efficiency curve numerically by using a commercial computational fluid dynamics software package. After confirming the design and performance of the impactor (experimentally 135 nm and numerically 137 nm of cutoff diameter), we measured the currents carried by mobility-classified DEPs downstream and upstream of the impactor so that the collection efficiency value for DEP could be obtained at each mobility diameter of DEPs. By making this value equal to that of the efficiency curve, the relationship between the mobility diameter of DEPs and the aerodynamic diameter was obtained; this enabled us to determine the effective density and dynamic shape factor of DEPs. The effective density decreased from 1.06 to 0.51 g/cm(3) and the dynamic shape factor increased from 1.28 to 1.64 as the particle size increased from 60 to 105 nm, regardless of the engine type or operating conditions.
机译:描述了一种串行方法,用于估计颗粒即柴油机废气颗粒(DEP)的颗粒有效密度和动态形状因数。为此,我们设计了一个截止直径为130 nm的单级低压冲击器。冲击器的收集效率曲线是使用迁移率分类的氯化钠(NaCl)颗粒作为迁移率直径的函数获得的。然后,通过将NaCl颗粒的迁移率直径转换为空气当量直径,可以将效率曲线表示为空气动力学直径的函数。我们还使用商业计算流体动力学软件包从数值上获得了效率曲线。确认撞击器的设计和性能(实验直径为135 nm,临界直径的数值为137 nm)后,我们测量了撞击器上游和下游由迁移率分类的DEP携带的电流,以便可以在以下位置获得DEP的收集效率值DEP的每个迁移直径。通过使该值等于效率曲线的值,可以得出DEPs的迁移率直径与空气动力学直径之间的关系。这使我们能够确定DEP的有效密度和动态形状因数。有效粒径从1.06降低到0.51 g / cm(3),动态形状因数从1.28升高到1.64,随着粒径从60纳米增加到105纳米,无论发动机类型或运行条件如何。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号