...
首页> 外文期刊>Aerosol Science and Technology: The Journal of the American Association for Aerosol Research >Pulse-Heat Aerosol Reactor (PHAR): Processing Thermolabile Biomaterials and Biomolecules into Nanoparticles with Controlled Properties
【24h】

Pulse-Heat Aerosol Reactor (PHAR): Processing Thermolabile Biomaterials and Biomolecules into Nanoparticles with Controlled Properties

机译:脉冲热气溶胶反应器(PHAR):将不耐热的生物材料和生物分子加工成具有可控特性的纳米颗粒

获取原文
获取原文并翻译 | 示例
           

摘要

This work addresses the challenge of processing thermolabile biomaterials and biomolecules into nanoparticles without compromising structural integrity and activity. Control of size, structure, and crystallinity of nanoparticles is desirable for drug targeting and controlled release applications. An innovation using pulse-heat aerosol processing is demonstrated through a design of a pulse-heat aerosol reactor. Nanoparticle aerosol lipid matrices (NALM), of stearic acid, were synthesized under different processing conditions, obtained through pulse heating (fixed duration, three heat-pulse levels) and solvent selection. Operation with continuous heating resulted in ill-conditioned, multimodal size distributions. Pulse heating resulted in the synthesis of NALM with mean mobility diameter in the range of 56-183 nm and narrow unimodal size distributions (geometric size distribution, GSD = 1.5-1.7). Under higher pulse levels, particles with larger mean mobility diameter were formed, which had shell-type structures, compared with smaller, solid particles under operation with low level or no heating. NALM with different degree of crystallinity were produced under different processing conditions, at which different drop temperature is expected to result. The activity of glucose oxidase enzyme was preserved, when subjected to high pulse-heat (gas temperature of 110°C) aerosol processing. These results establish pulse-heat aerosol processing as a single-step, continuous method to process heat-sensitive biomaterials and biomolecules into nanoparticles with controlled properties, while avoiding thermal damage.
机译:这项工作解决了将不耐热生物材料和生物分子加工成纳米颗粒而又不损害结构完整性和活性的挑战。对于药物靶向和控释应用而言,控制纳米颗粒的大小,结构和结晶度是理想的。通过脉冲热气溶胶反应器的设计,证明了使用脉冲热气溶胶处理的创新。硬脂酸的纳米颗粒气溶胶脂质基质(NALM)在不同的处理条件下合成,通过脉冲加热(固定持续时间,三个热脉冲水平)和溶剂选择获得。连续加热操作会导致病态的多峰尺寸分布。脉冲加热导致合成了NALM,其平均迁移率直径在56-183 nm范围内,且单峰尺寸分布窄(几何尺寸分布,GSD = 1.5-1.7)。在较高的脉冲水平下,与在低水平或不加热的情况下运行的较小的固体颗粒相比,形成了具有壳型结构的具有较大平均迁移率直径的颗粒。在不同的加工条件下生产出具有不同结晶度的NALM,在该条件下预期会产生不同的液滴温度。当经受高脉冲热(气体温度为110°C)的气雾处理时,葡萄糖氧化酶的活性得以保留。这些结果确立了脉冲热气溶胶处理为一步一步,连续的方法,可以将热敏生物材料和生物分子加工成具有可控特性的纳米颗粒,同时又避免了热损伤。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号