...
首页> 外文期刊>FDMP: Fluid Dynamics & Materials Processing >Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network
【24h】

Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network

机译:使用浸没边界法模拟微血管网络精确结构的生物组织中流体和热传递的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network, and to analyze the influence of structural changes of such a network induced by diabetes. A cubic region representing local skin tissue is selected as the computational domain, which in turn includes two intravascular and extravascular sub-domains. To save computational resources, the capillary network is reduced to a 1D pipeline model and embedded into the extravascular region. On the basis of the immersed boundary method (IBM) strategy, fluid and heat fluxes across a capillary wall are distributed to the surrounding tissue nodes by a delta function. We consider both steady and periodic blood pressure conditions at the entrances of the capillary network. Under steady blood pressure conditions, both the interstitial fluid pressure and tissue temperature around the capillary network are larger than those in other places. When the periodic blood pressure condition is considered, tissue temperature tends to fluctuate with the same frequency of the forcing, but the related waveform displays a smaller amplitude and a certain time (phase) delay. When the connectivity of capillary network is diminished, the capacity of blood redistribution through the capillary network becomes weaker and a subset of the vessel branches lose blood flow, which further aggravates the amplitude attenuation and time delay of the skin temperature fluctuation.
机译:本研究的目的是在生物组织中开发一种流体和热传递模型,以考虑相关微血管网络的确切结构,并分析糖尿病诱导的这种网络的结构变化的影响。选择代表局部皮肤组织的立方区域作为计算结构域,其又包括两个血管内和血管外亚结构域。为了节省计算资源,毛细管网络减少到1D流水线模型并嵌入到血管外区域。基于浸没的边界法(IBM)策略(IBM)策略,毛细血管壁的流体和热通量通过DELTA函数分配到周围的组织节点。我们考虑毛细管网络入口处的稳定和周期性血压条件。在稳定的血压条件下,毛细管网络周围的间隙流体压力和组织温度都大于其他地方的间隙。当考虑周期性血压条件时,组织温度趋于与强制频率相同的波动,但相关波形显示较小的幅度和一定时间(相位)延迟。当毛细管网络的连通性降低时,通过毛细管网络的血液再分配容量变弱,血管分支的子集失去血流,这进一步加剧了皮肤温度波动的幅度衰减和时间延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号