首页> 外文期刊>Lab on a chip >Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media
【24h】

Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media

机译:玻璃 - 硅 - 玻璃微/纳米流体模型的制造和验证,用于研究页岩样非常规双孔隙率紧密多孔介质的多相流动

获取原文
获取原文并翻译 | 示例
           

摘要

Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 mu m to 10 mu m for matrices and 100-200 mu m for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a serious fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale 'shale-like' microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial.
机译:与传统的油/煤气藏相比,具有微型/纳米尺寸的双尺度基质孔隙患者的非常规的页岩或紧身油/气体储层可能导致不同的流体流动机制。作为潜在的强大工具,微流体模型已被使用数十年来研究能量场中的孔径上的流体流动。然而,几乎所有微流体模型都是通过使用蚀刻方法而制造的,并且很少有双级微/纳米流体通道。在此,我们开发了一种使用剥离过程的基于实验室的,快速加工和经济高效的制造方法,该方法与阳极键合方法结合使用,这避免了任何蚀刻方法。双孔隙矩阵/微骨折图案,可以模拟页岩与随机不规则晶粒形状的拓扑结构,采用VORONOI算法设计。孔径频率范围为3μm至10μm,对于矩阵,用于微骨折100-200μm。硅被用作蒸发的材料并沉积在玻璃晶片上,然后与另一个玻璃晶片粘合。沟道深度与沉积的硅厚度相同(250nm)。通过使用先进的共聚焦激光扫描显微镜(CLSM)系统,我们直接可视化荧光染料水和油阶段的微/纳米双尺度通道内的孔隙水平流量。我们发现了一种严重的指法现象,当水在导管中的水位较高时,即使水具有较高的粘度,残留的油被分布在基质中的不同形式,微骨折和导管。我们证明了不同的基质/微骨折/宏观裂缝几何形状会导致影响储油的不同流动模式。利用这种微/纳米双级“页岩样”类似的物流模型,通过更简单和更低的方法制造,研究页岩或其他紧密的异构多孔介质中的复杂流体流动行为的研究将是显着的有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号