...
首页> 外文期刊>Nonlinear dynamics >Evaluation of breaking wave effects in liquid sloshing problems: ANCF/SPH comparative study
【24h】

Evaluation of breaking wave effects in liquid sloshing problems: ANCF/SPH comparative study

机译:液体晃动问题中破裂波效应的评价:ANCF / SPH比较研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper is focused on evaluating the effect of breaking waves in liquid sloshing problems. Two fundamentally different approaches, namely the smoothed particle hydrodynamics (SPH) and the finite element (FE) absolute nodal coordinate formulation (ANCF), are used to describe the liquid sloshing response in several sloshing scenarios. The SPH method is a mesh-free numerical technique often used to capture very large displacements in fluid and solid mechanics problems. ANCF finite elements, on the other hand, can be used to develop a non-incremental solution procedure, suited for the nonlinear analysis of flexible bodies undergoing large rotation and large deformation. The fundamental differences between the two approaches and the advantages and limitations of each are discussed. Two benchmark problems, the dam break and sloshing tank, are used to perform a detailed SPH/ANCF quantitative comparative study in different sloshing scenarios. While a good agreement is found between the ANCF and SPH converged solutions for the dam break problem, in the sloshing tank problem the SPH solution underpredicts the amplitude of oscillation of the fluid center of mass and the wave height at a selected probe point. Because one ANCF element can capture complex shapes, nearly 40 times fewer degrees of freedom than the SPH model are needed in both problems. The use of the ANCF models leads to a CPU saving of 70% and 25% in the broken dam and sloshing tank problems, respectively. In the case of the tank problem, the effect of light, moderate, and severe turbulence is examined. The position of the fluid center of mass is computed using the two approaches, and the results obtained are verified using a reference analytical solution. The power spectral density of the center of mass is evaluated using the fast Fourier transform (FFT) to study the effect of breaking waves. The results show that in the case of light and moderate turbulence, the ANCF model allows for accurately averaging the
机译:本文的重点是评估破碎波在液体晃动问题中的效果。两个基本上不同的方法,即平滑的粒子流体动力学(SPH)和有限元(Fe)绝对节点坐标配方(ANCF)用于描述几种晃动场景中的液体晃动响应。 SPH方法是一种无网的数值技术,通常用于捕获流体和固体力学问题中的非常大的位移。另一方面,ANCF有限元件可用于开发非增量解决方案程序,适用于经历大旋转和大变形的柔性体的非线性分析。讨论了两种方法与各自的优点和局限性之间的根本差异。两个基准问题,坝断裂和晃动槽,用于在不同晃动场景中执行详细的SPH / ANCF定量比较研究。虽然在坝断裂问题的ANCF和SPH融合解决方案之间发现了一个良好的一致性,但在晃动罐问题中,SPH解决方案占据了探针点处的流体质量振荡振幅和波长。因为一个ANCF元件可以捕获复杂的形状,所以在两个问题中需要比SPH模型更少的自由度近40倍。使用ANCF模型的使用可以分别在破碎的水坝和晃动罐问题中产生70%和25%的CPU。在罐问题的情况下,检查了光,中等和严重湍流的效果。使用两种方法计算流体质量中心的位置,并使用参考分析解决方案验证所获得的结果。使用快速傅里叶变换(FFT)来评估质量中心的功率谱密度,以研究破坏波的效果。结果表明,在光和中等湍流的情况下,ANCF模型允许准确平均

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号