首页> 外文期刊>Neuroscience and Biomedical Engineering >Magnetic Resonance Current Density Imaging for Customizing Transcranial Direct Current Stimulation - A Simulation Study
【24h】

Magnetic Resonance Current Density Imaging for Customizing Transcranial Direct Current Stimulation - A Simulation Study

机译:用于定制经颅直流刺激的磁共振电流密度成像 - 模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Transcranial direct current stimulation (tDCS) involves passing low currents through the brain and is a promising tool for inducing alteration of cortical excitability. However, tDCS presents challenges in terms of optimization of the electrode placement and stimulation parameters especially in cases of heterogeneously damaged cortical structures. The analysis of a simplified multi-shell computational head-model indicated that the neuronal fibers lying perpendicular to the electrode-scalp interface in the white matter (WM) beneath the stimulating anode are subjected to a depolarizing drive while those lying parallel to the electrode-scalp interface are exposed to a hyperpolarizing drive, but in the gray matter (GM) the opposite was observed. Moreover, parameter sensitivity analysis revealed that the neuronal fibers lying perpendicular to the electrode-scalp interface in the GM beneath the anode were subjected to a depolarizing drive while those lying parallel to the electrode-scalp interface were exposed to a hyperpolarizing drive when the WM and GM conductivity were 0.13S/m and 0.2S/m respectively. However, when the WM conductivity was increased to 1.1 S/m (GM at 0.2 S/m), the results were reversed. This highlighted the importance of accurate conductivity values in computational head-model in the cases of diseased brain tissue. Here, anisotropic conductivity and fiber trajectories can be estimated from diffusion magnetic resonance imaging (dMRI) which provides excellent anatomical details, and can be used to differentiate between healthy, ischemic, and perilesional brain tissue. Such dMRI-guided patient-specific head-models can be used to optimize electrode placement and stimulation parameters that is based on the distributions of the generalized activating function. Here, a Magnetic Resonance Current Density Imaging (MRCDI) based method is proposed for dMRI-guided subject-specific parameter estimation and model validation that is a novel approach in our opinion.
机译:经颅直流刺激(TDCS)涉及通过大脑通过低电流,并且是一种有助于诱导皮质兴奋性改变的工具。然而,TDCS在优化电极放置和刺激参数方面呈现挑战,特别是在异构地受损皮质结构的情况下。简化的多壳计算头模型的分析表明,在刺激阳极下方的白质(Wm)中垂直于电极 - 头皮界面的神经元纤维经受去极化驱动,而那些平行于电极的那些头皮接口暴露于超极化驱动器,但在灰质(GM)中观察到相反。此外,参数灵敏度分析显示,垂直于阳极下方的电气 - 头皮界面的神经元纤维经受去极化驱动,而当WM和WM时平行于电极-S16界面的那些被暴露于超极化驱动器。 GM电导率分别为0.13s / m和0.2s / m。然而,当WM电导率增加到1.1 s / m(Gm为0.2 s / m)时,结果逆转。这突出了在患病脑组织病例中计算头模型中精确电导率值的重要性。这里,可以从扩散磁共振成像(DMRI)估计各向异性电导率和纤维轨迹,其提供优异的解剖细节,并且可用于区分健康,缺血和脑脑组织。这种DMRI引导的患者特异性头部模型可用于优化基于广义激活功能的分布的电极放置和刺激参数。这里,提出了一种基于磁共振电流密度成像(MRCDI)的方法,用于DMRI引导的主题特定参数估计和模型验证,这是我们看来的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号