首页> 外文期刊>Neurobiology of learning and memory >Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn
【24h】

Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn

机译:脊髓内的血管性能:证据脑衍生的神经营养因子(BDNF),肿瘤坏死因子(TNF)和GABA功能的改变(离子塑性)调节疼痛和学习能力

获取原文
获取原文并翻译 | 示例
           

摘要

Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24–48?h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl?is down-regulated. This causes the intracellular concentration of Cl?to increase, reducing (and potentially reversing) the inward flow of Cl?through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
机译:审查了行为培训和神经损伤的证据可以参与调节自适应潜力的元塑过程。在模型系统中探讨了该问题,该系统在审查培训如何影响脊髓内(Lumbosacral)脊髓内的能力。响应 - 或者可控的)刺激施加尾部对脊椎横断面施加了一种行为修改,其学习。在以无法控制的方式接受刺激的动物中未观察到这种行为改变。暴露于无法控制的刺激也会参与禁用脊柱学习的过程24-48次。可控刺激具有相反的效果;它从而参与了一个能够学习和防止/反转无法控制刺激引起的学习赤字的过程。这些观察结果表明,学习集会可能会影响在未来情况中学习的能力,提供了行为沟通性的一个例子。可控刺激的保护/恢复效应与脑衍生的神经营养因子(BDNF)的上调有关。学习的破坏与疼痛(伤害性)电路的敏化有关,这通过降低了GABA依赖性抑制来实现。脊髓损伤(SCI)后,调节CL的外流的共转运蛋白(KCC2)是下调的。这使得Cl的细胞内浓度增加,降低(并潜在地逆转)通过GABA-A受体的内向流动。 GABA函数(离子塑性)的转变增加了神经兴奋性尾部的损伤,并设定了伤害性敏化的阶段。 KCC2中损伤的血液偏移与降次血清单晶(5HT)纤维的损失有关,其通过5HT-1A受体调节脊髓背角内的可塑性。提出了脊髓塑性的这些改变在脑依赖的任务(地方调节)中的疼痛疼痛。研究结果表明,离子可塑性会影响学习潜力,将神经回路从湿润/硬连接到激发/塑料。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号