...
首页> 外文期刊>Nature nanotechnology >Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries
【24h】

Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries

机译:超薄,柔性,固体聚合物复合电解质,使锂电池的对齐纳米多孔宿主实现

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (similar to 10 mu m) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. Here, we report on a polymer-polymer solid-state electrolyte design, demonstrated with an 8.6-mu m-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl) imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 x 10(-4) S cm(-1) at 30 degrees C) of the infused polymer electrolyte. All-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 degrees C and withstand abuse tests such as bending, cutting and nail penetration.
机译:对更安全电池的迫切需要是全固态锂基细胞的研究。为了实现与液体电解质基细胞相当的能量密度,需要具有高离子电导率的超薄和轻质固体电解质。然而,具有与液体电解质中使用的商业聚合物电解质分离器(类似于10μm)的可与液体电解质的固体电解质保持挑战,因为电池短路的短路风险增加。在此,我们报道了一种聚合物 - 聚合物固态电解质设计,用8.6-mu m厚的纳米多孔聚酰亚胺(PI)膜填充有可使用的聚环氧乙烷/双(三氟甲磺酰基)酰亚胺(PEO / LITFSI)。作为安全固体聚合物电解质。 PI膜是不易燃和机械强的,即使在循环超过1,000小时之后,也可以防止电池短路,并且垂直通道在30摄氏度下增强离子电导率(2.3×10(-4)厘米(-1) )注入的聚合物电解质。用PI / PEO / LITFSI固体电解质制造的全固态锂离子电池在60摄氏度下显示出良好的循环性能(C / 2速率为200周期),并承受诸如弯曲,切割和指甲渗透等滥用测试。

著录项

  • 来源
    《Nature nanotechnology》 |2019年第7期|共8页
  • 作者单位

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn Stanford CA 94305 USA;

    Penn State Univ Dept Mat Sci &

    Engn University Pk PA 16802 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Penn State Univ Dept Mat Sci &

    Engn University Pk PA 16802 USA;

    Stanford Univ Dept Chem Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号