首页> 外文期刊>Nature Microbiology >Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements
【24h】

Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements

机译:假单胞菌铜绿假单胞菌通过顺序控制IV型Pili运动来协调抽搐的动力

获取原文
获取原文并翻译 | 示例
           

摘要

Prokaryotes have the ability to walk on surfaces using type IV pili (TFP), a motility mechanism known as twitching(1,2). Molecular motors drive TFP extension and retraction, but whether and how these movements are coordinated is unknown(3). Here, we reveal how the pathogen Pseudomonas aeruginosa coordinates the motorized activity of TFP to power efficient surface motility. To do this, we dynamically visualized TFP extension, attachment and retraction events at high resolution in four dimensions using label-free interferometric scattering microscopy (iSCAT)(4). By measuring TFP dynamics, we found that the retraction motor PilT was sufficient to generate tension and power motility in free solution, while its partner ATPase PilU may improve retraction only in high-friction environments. Using precise timing of successive attachment and retraction, we show that P. aeruginosa engages PilT motors very rapidly and almost only when TFP encounter the surface, suggesting contact sensing. Finally, measurements of TFP dwell times on surfaces show that tension reinforced the adhesion strength to the surface of individual pili, thereby increasing effective pulling time during retraction. The successive control of TFP extension, attachment, retraction and detachment suggests that sequential control of motility machinery is a conserved strategy for optimized locomotion across domains of life.
机译:原核生物具有使用IV型Pili(TFP)的表面行走的能力,称为抽搐(1,2)。分子电机驱动TFP延伸和缩回,但无论是如何以及如何协调的都是未知的(3)。在这里,我们揭示了病原体假单胞菌铜绿假单胞菌如何将TFP的电动活动坐标,以便为功率有效的表面运动能力。为此,我们使用无标签的干涉散射显微镜(ISCAT)(4)在四个尺寸中动态地可视于四个尺寸的TFP扩展,附件和缩回事件。通过测量TFP动力学,我们发现缩回电动机加工足以在自由溶液中产生张力和动力运动,而其伴侣ATP酶Pilu可以仅在高摩擦环境中提高收缩。使用连续附着和收缩的精确时间,我们表明P.铜绿假单胞菌非常迅速地与PILT电机接合,并且几乎只在TFP遇到表面时,表明接触感测。最后,在表面上的TFP停顿时间测量表明,张力加强了各个皮层表面的粘合强度,从而增加了缩回期间的有效拉动时间。 TFP延伸,附件,撤退和脱离的连续控制表明,运输机械的顺序控制是跨生命领域的优化运动的保守策略。

著录项

  • 来源
    《Nature Microbiology》 |2019年第5期|共7页
  • 作者单位

    Ecole Polytech Fed Lausanne Sch Life Sci Inst Bioengn Lausanne Switzerland;

    Univ Oxford Dept Chem Phys &

    Theoret Chem Lab Oxford England;

    Univ Oxford Dept Chem Phys &

    Theoret Chem Lab Oxford England;

    Ecole Polytech Fed Lausanne Sch Life Sci Inst Bioengn Lausanne Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号