...
首页> 外文期刊>Nano Energy >A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity
【24h】

A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity

机译:用于制造具有高面积能的高级锂离子电池的柔性Limn2O4阴极的双碳锚固策略

获取原文
获取原文并翻译 | 示例

摘要

Lithium transition metal oxides (LTMOs) are important cathode materials in lithium-ion batteries (LIBs). Constructing the robust hybrid of LTMO-flexible substrate is of great significance for developing advanced flexible LIBs. However, currently reported flat noble metal-based flexible cathodes are cost-expensive and show quite low areal capacities. Developing low-cost and nanostructured flexible substrates for LTMO cathodes is highly desirable but still rarely reported. Particularly challenging is preventing flexible substrate corrosion and mitigating/eliminating the severe ion migration at interface during necessary high-temperature annealing process. Herein, carbon nanofibers (CNFs) with truncated conical graphene layers are carefully chosen as flexible substrates for the growth of ultrasmall LiMn2O4 nanocrystals. The highly graphitic structure enables good high-temperature oxidation resistance. The plenty of exposed graphitic edge planes afford unexpected strong anchoring of LiMn2O4, evidenced by both experimental results and theoretical calculations. Moreover, an amorphous carbon layer is simultaneously introduced and coated on LiMn2O4 nanocrystals, which provides another strong outer anchoring like a 'cargo net'. Such dual-carbon-anchoring strategy help produce a 1D LiMn2O4-nanocarbon hybrid with robust interface. As LIB cathode, it owns fast electron conduction, smooth Li+ transportation, good electrochemical stability and especially superior mechanical flexibility, thus enabling a high areal mass loading of 17.7 mg cm(-2). The corresponding fabricated flexible LiMn2O4/CNF@C//CNF full cell exhibits a high areal capacity of 2.01 mAh cm(-2) as well as good rate capability and cycling stability.
机译:锂过渡金属氧化物(LTMOS)是锂离子电池(LIBS)中的重要阴极材料。构建LTMO-柔性基板的稳健混合物对于开发先进的柔性LIB是具有重要意义。然而,目前报道的扁平贵金属基柔性阴极是成本昂贵的并且显示出相当低的面积容量。为LTMO阴极开发低成本和纳米结构柔性基板是非常理想的,但仍然很少报道。特别具有挑战性地防止柔性基板腐蚀和减轻/消除在必要的高温退火过程中界面处的严重离子迁移。这里,用截短的锥形石墨烯层的碳纳米纤维(CNFS)被仔细选择为柔性基材,用于超级载体LiMn2O4纳米晶体的生长。高层石墨结构能够良好的高温抗氧化性。大量暴露的石墨边缘平面提供了意想不到的LIMN2O4锚固,通过实验结果和理论计算证明。此外,同时引入非晶碳层并涂覆在LiMn2O4纳米晶体上,其提供像“货物网”一样的另一个强外锚定。这种双碳锚固策略有助于生产具有鲁棒界面的1D Limn2O4-纳米碳杂交杂交杂交。作为lib阴极,它拥有快速的电子传导,平滑Li +运输,良好的电化学稳定性,特别优越的机械柔性,从而使得高度的质量负荷为17.7mg cm(-2)。相应的制造柔性LiMn2O4 / CNF @ C // CNF全细胞具有2.01mAhcm(-2)的高面积容量,以及良好的速率能力和循环稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号