...
首页> 外文期刊>Nano Energy >Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency
【24h】

Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency

机译:高初始库仑效率的硬碳阳极中残留氧原子和缺陷的捕获效应

获取原文
获取原文并翻译 | 示例

摘要

Hard carbon is a promising anode candidate for lithium/sodium ion batteries due to the key features of low operation potential and low cost, but its practical utilization is hindered by a challenging issue of poor initial Coulombic efficiency (ICE), which has not been understood well and resolved properly. Herein, we report a new in-situ engineering approach to deliberately tune the residual oxygen atoms/defects of hard carbon by controlling the atmosphere of pyrolysis synthesis process and reveal important correlations between the ICE and residual oxygen atoms/defects. When used as an anode in sodium ion battery, the hard carbon electrode with reduced residual oxygen atoms and defects can achieve a high average ICE above 85%, which is considerably higher than the commonly observed similar to 70% and similar to 30% ICE values for pristine and acid treated hard carbon electrodes. Encouragingly, a high reversible capacity of 310 mAh g(-1) with good cycling stability (93% after 100 cycles) is demonstrated at a current density of 20 mA g(-1). The density functional theory (DFT) calculation and experimental results reveal that the trap effects of residual oxygen atoms and defects on Na+ are the key factors that impact the ICE of the hard carbon electrode. When the hard carbon is coupled with Na3V2(PO4)(2)F-3 cathode to form a sodium ion full cell, the battery delivers an impressively high energy density of 239 Wh/kg (based on the active mass of anode and cathode without additives), which is among the best performing sodium ion full cells. This work not only provides an effective approach to engineer the heteroatoms and defects in carbon-based materials but also sheds light on the design principle of practical hard carbon electrodes.
机译:由于低运行电位和低成本的关键特征,硬碳是锂/钠离子电池的有希望的阳极候选者,但其实际利用是受到较差的初始库仑效率(冰)的挑战性问题,这尚未理解好的并正确解决。在此,我们通过控制热解合成过程的气氛并揭示冰和残留的氧原子/缺陷之间的重要相关性来仔细地调节硬碳的残留氧原子/缺陷的新原位工程方法。当用作钠离子电池中的阳极时,具有降低的残余氧原子和缺陷的硬碳电极可以获得高于85%的高平均冰,其显着高于通常观察到的与70%相似,类似于30%的冰值用于原始和酸处理的硬碳电极。令人置气的是,在电流密度为20mA g(-1)的情况下,对循环稳定性的310mAhg(-1)的高可逆容量具有良好的循环稳定性(93%)。密度函数理论(DFT)计算和实验结果表明,残留氧原子和缺陷对Na +的捕集作用是影响硬碳电极的冰的关键因素。当硬碳与Na 3V 2(PO4)(2)F-3阴极偶联以形成钠离子全电池时,电池可令人印象深刻地提供239WH / kg的高能量密度(基于阳极和阴极的活性物质而没有添加剂),这是最好的性能钠离子全细胞。这项工作不仅提供了一种有效的方法来工程杂原子和碳基材料中的缺陷,而且还对实际硬碳电极的设计原理脱光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号