...
首页> 外文期刊>Nano Energy >Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe
【24h】

Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe

机译:协同乐队收敛和环杆纳米结构:在环保SNET中实现超级晶格导热系数和高价值

获取原文
获取原文并翻译 | 示例
           

摘要

SnTe has emerged as an environmentally friendly alternative to PbTe for power generation application. Here, we achieve an ultralow lattice thermal conductivity and a high thermoelectric performance of SnTe via the synergy of valence band convergence and endotaxial nanostructuring. Low-content Ge and Sb alloying leads to band convergence in SnTe as supported by DFT calculations, thereby remarkably increasing Seebeck coefficient and power factor. We also propose a phase separation strategy to introduce endotaxial Cu2Te nanostructures to SnTe. Endotaxial Cu2Te nanoprecipitates cause the lattice thermal conductivity to reduce significantly. Sn0.92Ge0.04Sb0.04Te-5%Cu2Te exhibits an ultralow lattice thermal conductivity of 0.27 Wm(-1) K-1 at 873 K, which is not only lower than the amorphous limit of SnTe but also comparable with those of thermoelectric materials with complex crystal structures and strong anharmonicity. Consequently, a remarkably high figure of merit (ZT) of 1.5 at 873 K is achieved by synergistically optimizing the electrical and thermal transport properties of SnTe. Such remarkably high ZT is achieved by adopting a facile and controllable one-step process, nontoxic and low-content element doping. Low-content precious metal doping can effectively reduce the cost of thermoelectric modules and potentially expand their usefulness for various thermoelectric generator applications. The environmentally friendly material with high ZT and low cost can definitely accelerate the process of widespread use of thermoelectric modules.
机译:SNTE已成为对发电应用的PBTE的环保替代品。在这里,我们通过价带收敛和环杆纳米结构的协同作用来实现超级晶格导热系数和SNE的高热电性能。低内容GE和SB合金化导致SNTE中的带收敛,如DFT计算所支持,从而显着增加塞贝克系数和功率因数。我们还提出了一种相分离策略,以引入环氮的Cu2Te纳米结构到SNET。结肠Cu2Te纳米尺寸使晶格导热率显着减少。 SN0.92Ge0.04SB0.04S0.04SB0.04SB0.04SB0.04SB0.04SB0.04SB0STE在873 k下表现出0.27Wm(-1)k-1的超级晶格导热率,其不仅低于SNE的无定形极限,而且与热电材料的无定形极限相当复杂的晶体结构和强大的Anharmonicity。因此,通过协同优化SNE的电气和热传输性能,实现了873 k处为1.5的非常高的优选(Zt)。通过采用容易和可控的一步法,无毒和低含量的元素掺杂来实现这种显着高的ZT。低含量贵金属掺杂可以有效地降低热电模块的成本,并可能扩展其对各种热电发电机应用的有用性。具有高ZT和低成本的环保材料肯定会加速广泛使用热电模块的过程。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号