Abstract Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge
首页> 外文期刊>Nano Energy >Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge
【24h】

Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge

机译:通过使用溴化锂和预充电,朝向原位保护的硫阴极

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractLithium-sulfur (Li-S) batteries suffer from the dissolution of its intermediate charge products (polysulfides) in organic electrolytes, which limits the utilization, rate performance and cycling stability of S cathode materials. Formation of protective surface coatings on S cathodes may effectively overcome such a challenge. Here, we explored a simple, low cost, and widely applicable method that offers in-situ formation of a protective coating on the S-based cathode by using lithium bromide (LiBr) as a novel electrolyte additive. Quantum chemical (QC) studies suggested that pre-cycling a S cathode at high potentials is needed to oxidize the Br-and induce formation of DME(-H) radicals, which are involved in the formation of a polymerized protective layer of a solid electrolyte interphase (SEI) on a S cathode at high potentials. Experimental studies with a LiBr additive confirmed that 3 pre-cycles in a voltage range of 2.5–3.6V are sufficient to achieve the formation of a robust Li ion permeable SEI on the cathode, effectively preventing the dissolution of polysulfides into electrolyte. As a result, almost no degradation was observed within 200 cycles, compared to more than 40% of capacity loss in the benchmark control cells without LiBr or the pre-cycles.Post-mortemanalysis on both the cathode and anode sides of the LiBr-comprising cells further provided evidence for the in-situ SEI formation on the cathode and the lack of polysulfides’ re-precipitation. In addition, such studies showed smooth surface on the cycled Li metal anode, in contrast to the rough Li SEI with dendrites and polysulfides in the benchmark cells.
机译:<![cdata [ 抽象 锂 - 硫(LI-S)电池患其中间电荷产物(多硫化物)在有机电解质中的溶解,这限制了利用, S阴极材料的速率性能和循环稳定性。 S阴极上的保护表面涂层的形成可以有效地克服这种挑战。在这里,我们探讨了一种简单,低成本和广泛适用的方法,可以通过使用溴化锂(LIBR)作为新型电解质添加剂在S基阴极上就地形成保护涂层。 Quantum Chemical(QC)研究表明,需要在高电位下预循环A阴极来氧化BR - 并诱导DME(-H)基团的形成,在高电位下涉及在S阴极上形成固体电解质间(SEI)的聚合保护层。具有LIMB添加剂的实验研究证实了2.5-3.6V的电压范围的3个预循环足以实现在阴极上形成鲁棒Li离子可渗透SEI的形成,有效地防止多硫化物溶解到电解质中。结果,在200个循环内观察到几乎没有降解,而没有LiBr或前循环的基准控制单元中的超过40%的容量损失。后验尸分析在LibR的阴极和阳极侧面,所述电池的阴极和阳极侧进一步为阴极原位SEI形成提供了证据,并且缺乏多硫化物再沉淀。此外,这种研究表明循环的Li金属阳极上的光滑表面与粗Li Sei与基准细胞中的树枝状和多硫化物相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号