...
首页> 外文期刊>Nano Energy >Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices
【24h】

Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices

机译:超超速Terahtz传输/群延迟切换在光活性WSE2功能化的化学设备中

获取原文
获取原文并翻译 | 示例
           

摘要

The emergence of larger-scaled two-dimensional (2D) layered materials has attracted intense research efforts and significant progress in the area of photonics and optoelectronics recently. As a remarkable representative of 2D materials, transition metal dichalcogenides (TMDCs) have demonstrated an astonishing photoconductivity and the ultrafast charge carrier dynamics, which provides excellent potentials for ultrafast optical modulators. Herein, by simply transferring a high-quality CVD-grown WSe2 multilayer on plasmon-induced transparency (PIT) metasurfaces, we demonstrate that the transmission amplitude modulation is as high as 43% and the slow light switching is up to 6 ps in the THz regime. Under photoexcitation, both functionalities are dynamically controlled within similar to 8 ps owing to a merit of ultrafast free carriers' relaxation in the WSe2 multilayer. Moreover, a theoretical model consisting of two coupled harmonic oscillators and the near-field distributions are simultaneously employed to verify the strong dependence of the active PIT switching behavior on the suppression of the bright mode of split ring resonators. Our proposed versatile active WSe2-functionalized metasurface with a low cost and simple manufacturing will give researchers new insights into the ultrafast switchable metaphotonic devices.
机译:较大缩放二维(2D)分层材料的出现引起了激烈的研究努力和最近在光子和光电子领域的重要进展。作为2D材料的卓越代表性,过渡金属二甲基甲基化物(TMDC)已经证明了一种令人惊讶的光电电导光和超快电荷载体动力学,其为超快光调制器提供了出色的电位。这里,通过简单地在等离子体诱导的透明度(凹坑)元件上转移高质量的CVD生长的WSE2多层,我们证明传输幅度调制高达43%,并且慢光切换在THz中最多可达6 PS政权。由于WSE2多层的超超空间载体的放松,这两种功能在类似于8 PS的情况下。此外,同时采用由两个耦合谐波振荡器和近场分布组成的理论模型,以验证有源凹坑切换行为对抑制分流环谐振器的明亮模式的强依赖性。我们提出的多功能活性WESE2-功能化的MEDASUREFACE,具有低成本和简单的制造,将为研究人员提供新的洞察力进入超快速可切换的化学设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号