首页> 外文期刊>Nano Energy >A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries
【24h】

A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries

机译:用于制造3D MFE2O4(M = Mn,Ni,Cu,Cu,Co)/石墨氮化碳氮化氮石墨烯纳米复合材料作为锂离子电池的先进阳极的一般方法

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient energy storage systems based on rechargeable lithium-ion batteries (LIBs) represent the most leading technology in the field of portable devices market. Nanostructured electrode materials possess compelling opportunities for high-performance LIBs, but it's still the main challenge to ensure the structural integrity of the electrodes over harsh discharge-recharge cycles. Here, we present a general approach, combining self-assembly process, in-situ substitution, and thermal annealing, for the fabrication of a 3D heteroarchitecture built from nanosized spinel ferrites (MFO, denoted as MFe2O4, M = Mn, Ni, Cu, Co) and graphitic carbon nitride covalently functionalized nitrogen-doped graphene (CN-NG). This typical 3D architecture could possess a series of distinctive structural advantages, including: (i) sufficient hierarchical pores and channels for the rapid access of electrolytes, (ii) plentiful topological defects introduced by lamellar g-C3N4 nanoflakelets for the ultrafast absorption and diffusion of lithium ions, (iii) incorporation of structural nitrogen in graphene to modulate the electronic structure for boosting the electron transport and providing extra mechanism for lithium storage, (iv) uniformly distributed MFO nanoparticles with large amounts of active centers and high reversible capacities, (v) strong covalent C-N bonding and metal-support interaction for guaranteeing the long-term electrochemical cyclability, all of which are conducive to accelerating the improvement of lithium storage properties. As a consequence, significantly high reversible capacities of 1032, 919, 1008, and 1105 mAh g(-1) are obtained for 3D MnFe2O4/CN-NG(0.4), 3D NiFe2O4/CN-NG(0.4), 3D CoFe2O4/CN-NG(0.4), and 3D CuFe2O4/CN-NG(0.4), respectively, at a current density of 0.1 A g(-1). Especially, 3D MnFe2O4/CN-NG(0.4) presents a capacity retention of 73% at a high current density of 1 A g(-1) even after 800 cycles, as well as excellent rate capability and reliable long-term
机译:基于可充电锂离子电池(LIBS)的高效储能系统代表了便携式设备市场领域最领先的技术。纳米结构电极材料具有令人信服的高性能LIBS的机会,但它仍然是确保电极的结构完整性在苛刻的放电补给循环中的结构完整性。在这里,我们提出了一种通用方法,将自组装过程,原位取代和热退火组合,用于制造由纳米尖晶石铁氧烷(MFO,表示为MFE2O4,M = Mn,Ni,Cu,的3D异质建筑CO)和石墨碳氮化物共价官能化氮掺杂石墨烯(CN-NG)。这种典型的3D架构可以具有一系列独特的结构优势,包括:(i)足够的等级孔隙和用于快速进入电解质的孔径,(ii)由层状G-C3N4纳米薄膜引入的丰富拓扑缺陷,用于超速吸收和扩散锂离子,(iii)在石墨烯中掺入结构氮以调节升压电子传输的电子结构,并为锂储存提供额外机制,(iv)具有大量积极中心和高可逆容量的均匀分布的MFO纳米颗粒(V )强的共价CN键合和金属支撑相互作用,用于保证长期电化学控制性,所有这些都有利于加速锂储存性能的改善。因此,为3D MNFE2O4 / CN-NG(0.4),3D NiFe2O4 / CN-NG(0.4),3D COFE2O4 / CN,获得1032,919,1008和1105mAhg(-1)的显着高可逆容量。 -NG(0.4),以及3D CuFe2O4 / CN-NG(0.4),电流密度为0.1Ag(-1)。特别是,即使在800次循环之后,3D MNFE2O4 / CN-NG(0.4)也呈现为1A(-1)的高电流密度为73%的容量保持,以及优异的速率能力和可靠的长期

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号