首页> 外文期刊>CrystEngComm >Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries
【24h】

Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries

机译:水性和非水性镁离子电池中尖晶石型MgMn2O4和lambda-MnO2中镁的电化学插入/插入

获取原文
获取原文并翻译 | 示例
           

摘要

By using both chemical and electrochemical methods, magnesium has been reversibly removed from MgMn2O4 (s.g. I4(1)/amd) with appropiate texture to form single-phase and nanocrystalline lambda-MnO2 (s.g. Fd (3) over barm). Cubic lambda-MnO2 is not stable after annealing in both air and Ar atmospheres. The oxidation of Mn(III) to Mn(IV) eliminates the tetragonal distortion of the spinel-type lattice, but lambda-MnO2 is more effectively obtained when powdered MgMn2O4 has a large specific surface area and a small particle size. In an aqueous solution of a magnesium salt, lambda-MnO2 is formed by galvanostatic charge of MgMn2O4 and continuous Ar-flowing for removing oxygen from the solution. Starting from lambda-MnO2, the tetragonal structure of MgMn2O4 and the cubic structure of LiMn2O4 are generated by electrochemical cycling in aqueous solutions containing salts of magnesium and lithium, respectively. In an aqueous solution cell, this material exhibits a reversible capacity of about 150 mA h g(-1) and can be used in magnesium-ion batteries demonstrating it to be competitive against their lithium counterparts. In the absence of metallic Mg, the use of carbonate-based solvents can be a good choice for veritable non-aqueous magnesium-ion batteries, for example using positive electrode materials like MgMn2O4 (magnesium-ion source) and negative electrode materials like V2O5. In non-aqueous solvents (ethylene carbonate-diethyl carbonate mixture), the cubic phase lambda-MnO2 is not formed, the tetragonal structure of MgxMn2O4 is preserved and its lattice cell is contracted.
机译:通过使用化学和电化学方法,镁已经从MgMn2O4中被可逆地去除(例如I4(1)/ amd),具有适当的质地,以形成单相和纳米晶体的λ-MnO2(例如在barm上的Fd(3))。立方λ-MnO2在空气和Ar气氛中退火后均不稳定。 Mn(III)氧化成Mn(IV)消除了尖晶石型晶格的四方畸变,但是当粉状MgMn2O4具有较大的比表面积和较小的粒径时,可以更有效地获得λ-MnO2。在镁盐水溶液中,通过对MgMn2O4进行恒流充电并持续进行Ar流动以从溶液中除去氧气,形成了λ-MnO2。从λ-MnO2开始,MgMn2O4的四方结构和LiMn2O4的立方结构分别通过在含有镁和锂盐的水溶液中进行电化学循环而生成。在水溶液电池中,该材料显示出约150 mA h g(-1)的可逆容量,可用于镁离子电池,证明其可与锂离子电池竞争。在没有金属Mg的情况下,对于真正的非水镁离子电池来说,使用碳酸酯类溶剂是一个不错的选择,例如使用MgMn2O4(镁离子源)等正极材料和V2O5等负极材料。在非水溶剂(碳酸亚乙酯-碳酸二乙酯混合物)中,不会形成立方相λ-MnO2,MgxMn2O4的四方结构得以保留,其晶格收缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号