首页> 外文期刊>Molecular simulation >Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials
【24h】

Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials

机译:了解基于机器学习的内部电位的无定形固体的热性质

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the thermal properties of disordered systems is of fundamental importance for condensed matter physics - and for practical applications as well. While quantities such as the thermal conductivity are usually well characterised experimentally, their microscopic origin is often largely unknown - hence the pressing need for molecular simulations. However, the time and length scales involved with thermal transport phenomena are typically well beyond the reach of ab initio calculations. On the other hand, many amorphous materials are characterised by a complex structure, which prevents the construction of classical interatomic potentials. One way to get past this deadlock is to harness machine-learning (ML) algorithms to build interatomic potentials: these can be nearly as computationally efficient as classical force fields while retaining much of the accuracy of first-principles calculations. Here, we discuss neural network potentials (NNPs) and Gaussian approximation potentials (GAPs), two popular ML frameworks. We review the work that has been devoted to investigate, via NNPs, the thermal properties of phase-change materials, systems widely used in non-volatile memories. In addition, we present recent results on the vibrational properties of amorphous carbon, studied via GAPs. In light of these results, we argue that ML-based potentials are among the best options available to further our understanding of the vibrational and thermal properties of complex amorphous solids.
机译:了解无序系统的热性质对凝聚物物理学的重要性是重要的 - 以及实际应用。虽然诸如导热率的量通常在实验上很好地表征,但它们的微观原点通常很大程度上是未知的 - 因此压制需要分子模拟。然而,热传输现象所涉及的时间和长度尺度通常远远超出AB初始计算的范围。另一方面,许多无定形材料的特征在于复杂的结构,这防止了经典的内部电位的构造。通过这种死锁的一种方法是利用机器学习(ML)算法来构建内部电位:这些可能与经典力领域几乎是计算效率,同时保留了大部分的第一原理计算的准确性。在这里,我们讨论神经网络电位(NNP)和高斯近似电位(间隙),两个流行的ML框架。我们审查了通过NNPS,通过NNPS,相变材料的热性能进行调查的工作,广泛用于非易失性存储器的系统。此外,我们通过间隙研究了无定形碳的振动性质的结果。鉴于这些结果,我们认为基于ML的电位是最佳选择,以进一步了解复杂无定形固体的振动和热性质的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号