首页> 外文期刊>Mycorrhiza News >High-throughput Image-based Phenotyping for Studying Plant Respo to Arbuscular Mycorrhizal Fungi
【24h】

High-throughput Image-based Phenotyping for Studying Plant Respo to Arbuscular Mycorrhizal Fungi

机译:基于高吞吐图像的表型测量植物应对丛枝菌根真菌

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Arbuscular mycorrhizal fungi (AMF), as plant bio-stimulants, have been gaining prominence in agriculture because of their potential in improving nutrient uptake efficiency, tolerance to various stressors, and crop growth (Rouphael, Spichal, Panzarova,et al. 2018). Multiple benefits to plants by AMF include uptake of phosphorus and other poorly mobile nutrients (for example, N, S, K, Ca, Fe, Cu, Zn), increased soil aggregation and carbon sequestration, and stimulation of other organismal growth in the rhizosphere (Ingraffia, Amato, Frenda, et al. 2019; Battini, Gronlund, Agnolucci, et al.2Ql). Responses to the mycorrhizal colonization may vary widely, depending on the host plant as well as the fungus. The aforementioned responses are positive for plant's growth, but there are a few negative responses exhibited by plants when exposed to AMF, for example, mycorrhizal growth depressions.These negative responses are gaining popularity amongst researchers/scientists engaged in AMF development. These responses can be observed in the form of phenotypic changes in plants. Plants respond to AMF and are colonized by them at different times and intensities. A better understanding of plant growth response to mycorrhizae can be achieved by collecting time series data of the plant phenotype. Such data sets can be laborious and costly to generate, as they usually rely on multiple harvests (Watts-Williams, Jewell, Brien, et al. 2019). An emerging advancement in obtaining such data is the use of image capture technology and open source analysis tools (Fahlgren, Gehan, and Baxter 2015). Plant phenotyping is an important tool in addressing and understanding plant environment interaction and its translation into application in crop management practices and effectsof biostimulants (Pieruschka and Schurr 2019). Plant phenomics employs high-throughput image-based phenotyping of above-ground plant tissues (Marko, Brigila, Summerer, et al. 2018; Fahlgren, Gehan, and Baxter 2015). 'High-throughput' is a technologicalclassification term that is relative to the effort associated with measurement (Fahlgren, Gehan, and Baxter 2015). Improvements in the specificity and throughput of phenotypic assessment at different biological levels such as phenomics, metabolomics, andgenomics, are the main objectives of modernphenotyping (Sytar, Zivcak, Olsovska, etal. 2018). Modern phenotyping comprehensively assesses complex plant traits such as growth, development, tolerance, resistance to biotic and abiotic stresses, architecture, physiology and yield, through automated processes (Marko, Brigila, Summerer, etal. 2018; Fahlgren, Gehan, and Baxter 2015). Recent advances in this technology have enabled rapid worldwide development of high-throughput automated and semi-automated field and laboratory phenotyping platforms. Thenewly developed plant phenotyping platforms produce relatively large quantity of data than the initial platforms; hence need special systems for data management, access and storage, and also new statistical tools for deriving biologically significant signals from both experimental and environmental noise (Sytar, Zivcak, Olsovska, et al. 2018).
机译:丛枝菌根真菌(AMF),作为植物生物兴奋剂,由于其潜力在提高营养吸收效率,对各种压力源的耐受性和作物生长(Rouphael,Spichal,Panzarova,等,2018)的潜力,因此占农业的突出。 AMF对植物的多种益处包括吸收磷和其他不良移动营养素(例如,N,S,K,Ca,Fe,Cu,Zn),增加土壤聚集和碳螯合,以及刺激根际的其他有机体生长(Ingraffia,Amato,Frenda,et al。2019; Battini,Gronlund,Agnolucci,et al.2q l)。对菌根殖民化的反应可能很大,取决于宿主植物以及真菌。上述反应是植物的生长阳性,但在暴露于AMF时,植物展出了一些负响应,例如菌根生长抑郁。这些负面反应在从事AMF发展的研究人员/科学家之间获得普及。可以以植物的表型变化的形式观察到这些反应。植物回应AMF,并在不同的时期和强度被他们殖民。通过收集植物表型的时间序列数据,可以更好地理解对菌根的植物生长反应。这样的数据集可以生成艰苦且成本高,因为它们通常依靠多次收获(Watts-Williams,Jewell,Brien,等,2019)。获得此类数据的新兴进步是使用图像捕获技术和开源分析工具(Fahlgren,Gehan和Baxter 2015)。植物表型是解决和了解植物环境互动及其翻译成在作物管理实践和生物染色剂的影响中的重要工具(Pieruschka和Schurs 2019)。植物表情采用基于高通量的地面植物组织的表型表型(Marko,Brigila,Sumperer等,2018; Fahlgren,Gehan和Baxter 2015)。 “高吞吐量”是一种技术学期,它是相对于与测量相关的努力(Fahlgren,Gehan和Baxter 2015)。改善不同生物水平的表型评估的特异性和产量,如表皮,代谢组合,和念珠组合,是现代运动体的主要目标(Sytar,Zivcak,Olsovska,Etal。2018)。现代表型通过自动化过程全面评估复杂的植物特征,如生长,发展,耐受性,抗生物和非生物胁迫,建筑,生理学和产量,夏令生,etal。2018; Fahlgren,Gehan和Baxter 2015) 。该技术的最新进展使高通量自动化和半自动领域和实验室表型平台的快速发展能够快速发展。然后,开发的植物表型平台比初始平台产生相对大量的数据;因此,需要特殊的系统进行数据管理,访问和存储,以及用于从实验和环境噪声中导出生物学显着的信号的新统计工具(Sytar,Zivcak,Olsovska,等。2018)。

著录项

  • 来源
    《Mycorrhiza News》 |2019年第2期|共3页
  • 作者

    Akshaya S; Manoharachary C;

  • 作者单位

    Compiled fromTERI Riza database(TERI Darbari Seth Block India Habitat Centre Lodhi Road New Delhi - 110003 India);

    Compiled fromTERI Riza database(TERI Darbari Seth Block India Habitat Centre Lodhi Road New Delhi - 110003 India);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号