...
首页> 外文期刊>Molecular pharmaceutics >Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels
【24h】

Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels

机译:超饱和率和剂量对基于水不溶性聚(2-羟乙基甲基丙烯酸甲酯)水凝胶的无定形固体分散体动力学溶解度谱的综合作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called “spring-and-parachute” concentration–time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates sufficiently rapid initial supersaturation buildup above the critical supersaturation, resulting in more rapid precipitation. Above this smallest-particle-size range, the matrix-diffusion-regulated nonlinear rate of drug release gets slower, which results in a more modest rate of supersaturation buildup, leading to a maximum supersaturation below the critical-supersaturation level without appreciable precipitation. The area-under-the-curve (AUC) values of the in vitro kinetic-solubility concentration–time profiles were used to correlate the corresponding trends in dissolution enhancement. There are observed monotonic increases in AUC values with increasing particle sizes for high-dose ASDs based on water-insoluble hydrogel matrixes, as opposed to the previously reported AUC maxima at some intermediate supersaturation rates or doses in soluble amorphous systems, whereas in the case of low-dose ASDs (i.e., below the critical dose levels), crystallization would be negligible, leading to sustained supersaturation with all particle sizes (i.e., eventually reaching the same maximum supersaturation) and the smallest particle size reaching the maximum supersaturation the fastest. As a result, the smallest particle sizes yield the largest AUC values in the case of low-dose ASDs based on water-insoluble hydrogel matrixes. In addition to probing the interplay between the supersaturation-generation rates and total doses in ASDs based on insoluble hydrogel carriers, our results further support the fact that through either increasing the hydrogel-particle size or lowering the total dose to achieve maximum supersaturation still below the critical-supersaturation level, it is possible to avoid drug precipitation so as to maintain sustained supersaturation.
机译:在非思想溶解条件下,基于可溶性载体的无定形固体分散体(ASD)的动力学 - 溶解度谱通常表现出所谓的“弹簧和降落伞”浓度 - 时间行为。然而,已知基于不溶性载体(包括水凝胶)的ASDs的动力学 - 溶解度谱通过基质调节的扩散机制在非思想扩散机制期间显示出持续的过饱和,通过该扩散机制,药物的过饱和度逐渐延长并持续没有用作结晶抑制剂的任何溶解的聚合物。尽管先前的研究结果证明了可溶性无定形系统的动力学溶解度和总剂量之间的相互作用(包括基于来自可溶性聚合物载体的溶解调节的释放)的ASDs,超饱和速率和剂量对动力学 - 溶解度的综合影响基于来自水不溶性载体的扩散调节释放的ASDS的简档尚未研究。因此,本研究的目的是研究基于不溶性水凝胶载体的ASDS的总剂量和过饱和发电速率的影响。我们使用基于水不溶性交联聚(2-羟乙基甲基丙烯酸酯)(PHEMA) - 氢缩粒珠和两种不良水溶性模型药物的亚羟乙基珠粒和弱酸性吲哚美辛(IND)和弱基础posaconazole(PCZ)。我们的结果清楚地显示了首次通过使用最小粒径分数和高剂量(即高于临界剂量),确实可以显着缩短动力学溶解度概率的持续过饱和度的持续时间基于水不溶性水凝胶载体的ASD,使得它类似于基于可溶性载体与ASDS通常相关的弹簧和降落伞溶出曲线。这产生了足够快速的初始过饱和累加率,高于临界超饱和度,导致更快的降水。高于这种最小粒径范围,基质扩散调节的药物释放的非线性率较慢,这导致更适中的过饱和累加率,导致最大过饱和度低于临界 - 过饱和水平而没有明显的降水。体外动力学 - 溶解度浓度 - 时间谱的面积曲线(AUC)值用于与溶解增强的相应趋势相关。在基于水不溶性水凝胶基质的高剂量ASDS增加,观察到AUC值的单调值增加,与先前报道的AUC最大值相反,在可溶性无定形系统中的一些中间饱和度速率或剂量,而在此情况下低剂量ASD(即,低于临界剂量水平),结晶会忽略不计,导致所有粒度持续过饱和(即,最终达到相同的最大过饱和度),最小的粒度达到最快的过饱和度最快的粒度。结果,最小的粒度在基于水不溶性水凝胶基质的低剂量ASDS的情况下产生最大的AUC值。除了基于不溶性水凝胶携带者的ASDS中的超饱和生成速率和总剂量之间的相互作用之外,我们的结果还在增加通过增加水凝胶粒度或降低总剂量以获得最大过饱和的事实仍然低于临界过饱和水平,可以避免药物沉淀,以保持持续的过饱和度。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号