...
首页> 外文期刊>Molecular biology reports >Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance
【24h】

Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance

机译:拟南芥SOD和APX基因的异位表达改变了与二次细胞壁纤维素生物合成相关的代谢池和基因,提高耐盐性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hydrogen peroxide (H2O2) is known to accumulate in plants during abiotic stress conditions and also acts as a signalling molecule. In this study, Arabidopsis thaliana transgenics overexpressing cytosolic CuZn-superoxide dismutase (PaSOD) from poly-extremophile high-altitude Himalayan plant Potentilla atrosanguinea, cytosolic ascorbate peroxidase (RaAPX) from Rheum australe and dual transgenics overexpressing both the genes were developed and analyzed under salt stress. In comparison to wild-type (WT) or single transgenics, the performance of dual transgenics under salt stress was better with higher biomass accumulation and cellulose content. We identified genes involved in cell wall biosynthesis, including nine cellulose synthases (CesA), seven cellulose synthase-like proteins together with other wall-related genes. RNA-seq analysis and qPCR revealed differential regulation of genes (CesA 4, 7 and 8) and transcription factors (MYB46 and 83) involved in secondary cell wall cellulose biosynthesis, amongst which most of the cellulose biosynthesis gene showed upregulation in single (PaSOD line) and dual transgenics at 100mM salt stress. A positive correlation between cellulose content and H2O2 accumulation was observed in these transgenic lines. Further, cellulose content was 1.6-2 folds significantly higher in PaSOD and dual transgenic lines, 1.4 fold higher in RaAPX lines as compared to WT plants under stress conditions. Additionally, transgenics overexpressing PaSOD and RaAPX also displayed higher amounts of phenolics as compared to WT. The novelty of present study is that H2O2 apart from its role in signalling, italso provides mechanical strength to plants and aid in plant biomass production during salt stress by transcriptional activation of cellulose biosynthesis pathway. This modulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create plants with enhanced cellulose content for biofuel use.
机译:已知过氧化氢(H 2 O 2)在非生物胁迫条件下积聚在植物中,并且还用作信号分子。在本研究中,从黄斯蒂奥洛高原Himalayan植物potentilla antrosanguea,从Rheum autherale和过表达基因的双转基因的细胞溶质抗坏血酸过氧化物酶(Raapx)过表达并分析了盐压力。与野生型(WT)或单一转基因相比,盐胁迫下双转基因的性能更好地具有更高的生物质积累和纤维素含量。我们鉴定了参与细胞壁生物合成的基因,包括九纤维素合成酶(CESA),七种纤维素合酶样蛋白与其他壁相关基因一起。 RNA-SEQ分析和QPCR揭示了参与二次细胞壁纤维素生物合成中的基因(CESA 4,7和8)和转录因子(MYB46和83)的差异调节,其中大多数纤维素生物合成基因在单一的纤维素生物合成基因中显示出上调(Pasod线)和100mm盐胁迫下的双转基因。在这些转基因中观察到纤维素含量和H 2 O 2积聚之间的正相关性。此外,与在胁迫条件下的WT植物相比,纤维素含量明显高1.6-2倍,显着高出1.4倍,RAAPX系中较高1.4倍。另外,与wt相比,过表达Pasod和Raapx的转基因也显示出较高量的酚类。本研究的新颖性是,除了其在信号传导中的作用之外,ITALSO在通过纤维素生物合成途径的转录激活来提供植物的机械强度和植物生物质产生。这种纤维素生物合成机械在植物中的调节具有潜在的洞察力,进入植物生长,形态发生和产生具有增强的纤维素含量的植物,用于生物燃料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号